[1] LI, X., BHUSHAN, B., TAKASHIMA, K., BAEK, C. W., and KIM, Y. K. Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Ultramicroscopy, 97, 481-494(2003) [2] PEI, J., TIAN, F., and THUNDAT, T. Glucose biosensor based on the microcantilever. Analytical Chemistry, 76, 292-297(2004) [3] WANG, X. D., ZHOU, J., SONG, J. H., LIU, J., XU, N. S., and WANG, Z. L. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Letters, 6, 2768-2772(2006) [4] TANNER, S. M., GRAY, J. M., ROGERS, C. T., BERTNESS, K. A., and SANFORD, N. A. High-Q GaN nanowire resonators and oscillators. Applied Physics Letters, 91, 203117(2007) [5] FAN, H. J., LEE, W., HAUSCHILD, R., ALEXE, M., LE RHUN, G., SCHOLZ, R., DADGAR, A., NIELSCH, K., KALT, H., KROST, A., ZACHARIAS, M., and GÖSELE, U. Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric application. Small, 4, 561-568(2006) [6] DAVID, A. S. Polarity and piezoelectric response of solution grown zinc oxide nanocrystals on silver. Journal of Applied Physics, 101(1), 014316(2007) [7] TADIGADAPA, S. and MATETI, K. Piezoelectric MEMS sensors:state-of-the-art and perspectives. Measurement Science and Technology, 20(9), 092001(2009) [8] SADEGHI, H., BAGHANI, M., and NAGHDABADI, R. Strain gradient elasticity solution for functionally graded micro-cylinders. International Journal of Engineering Sciences, 50, 22-30(2012) [9] LAZOPOULOS, K. A. Non-smooth bending and buckling of a strain gradient elastic beam with non-convex stored energy function. Acta Mechanica, 225(3), 825-834(2014) [10] ABDI, J., KOOCHI, A., KAZEMI, A. S., and ABADYAN, M. Modeling the effects of size dependence and dispersion forces on the pull-in instability of electrostatic cantilever NEMS using modified couple stress theory. Smart Materials and Structures, 20, 055011(2011) [11] ÖMER CIVALEK, B. A. Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory. Meccanica, 48, 863-873(2013) [12] CAO, W. Z., YANG, X. H., and TIAN, X. B. Anti-plane problems of piezoelectric material with a micro-void or micro-inclusion based on micromorphic electroelastic theory. International Journal of Solids and Structures, 49(22), 3185-3200(2012) [13] ROMEO, M. A microstructure continuum approach to electromagnetoelastic conductor. Continuum Mechanics and Thermdynamics, 28(6), 1807-1820(2016) [14] WANG, Y. Z., CUI, H. T., LI, F. M., and KISHIMOTO, K. Effects of viscous fluid on wave propagation in carbon nanotubes. Physical Letters A, 375, 2448-2451(2011) [15] WANG, Y. Z., LI, F. M., and KISHIMOTO, K. Effects of axial load and elastic matrix on flexural wave propagation in nanotube with nonlocal Timoshenko beam model. ASME Journal of Vibration Acoustics, 134, 031011(2012) [16] MILLER, R. E. and SHENOY, V. B. Size-dependent elastic properties of nanosized structural elements. Nanotechnology, 11, 139-147(2000) [17] CHEN, C. Q., SHI, Y., ZHANG, Y. S., ZHU, J., and YAN, Y. J. Size-dependence of Young's modulus in ZnO nanowires. Applied Physics Letters, 96, 075505(2006) [18] ZHANG, J., WANG, C. Y., CHOWDHURY, R., and ADHIKARI, S. Small-scale effect on the mechanical properties of metallic nanotubes. Applied Physics Letters, 101, 093109(2012) [19] MCHARGUE, C. J. Surface Mechanical Properties Using Nanoindentation, Springer, Dordrecht (1997) [20] DAI, S. X., GHARBI, M., SHARMA, P., and PARK, H. S. Surface piezoelectricity:size effects in nanostructures and the emergence of piezoelectricity in non-piezoelectric materials. Journal of Applied Physics, 110, 104305(2011) [21] GURTIN, M. E. and MURDOCH, A. I. A continuum theory of elastic material surfaces. Archive Rational Mechanics and Analysis, 57, 291-323(1975) [22] GURTIN, M. E. and MURDOCH, A. I. Effect of surface stress on the natural frequency of thin crystals. Journal of Applied Physics, 14, 529-530(1976) [23] LU, P., LEE, H. P., LU, C., and O'SHEA, S. J. Surface stress effects on the resonance properties of cantilever sensors. Physical Review B, 72, 085405(2005) [24] WANG, G. F. and FENG, X. Q. Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Applied Physics Letters, 90, 231904(2007) [25] HE, J. and LILLEY, C. M. Surface effect on the elastic behavior of static bending nanowires. Nano Letters, 8, 1798-1802(2008) [26] ANSARI, R. and SAHMANI, S. Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories. International Journal of Engineering Sciences, 49, 1244-1255(2011) [27] PARK, H. S. and KLEIN, P. A. Surface stress effects on the resonant properties of metal nanowires:the importance of finite deformation kinematics and the impact of the residual surface stress. Journal of the Mechanics and Physics of Solids, 56, 3144-3166(2008) [28] SONG, F., HUANG, G. L., PARK, H. S., and LIU, X. N. A continuum model for the mechanical behavior of nanowires including surface and surface-induced initial stresses. International Journal of Solids and Structures, 48, 2154-2163(2011) [29] MOGILEVSKAYA, S. G., CROUCH, S. L., and STOLARSKI, H. K. Multiple interacting circular nano-inhomogeneities with surface/interface effects. Journal of the Mechanics and Physics of Solids, 56(6), 2298-2327(2008) [30] RU, C. Q. Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with a clarification of its related versions. Science China:Physics, Mechanics and Astronomy, 53, 536-544(2010) [31] RU, C. Q. A strain-consisitent plate model with surface elasticity. Continuum Mechanics and Thermdynamics, 28(1), 263-273(2015) [32] YUN, G. and PARK, H. S. Surface stress effects on the bending properties of fcc metal nanowires. Physical Review B, 79, 195421(2009) [33] HUANG, G. Y. and YU, S. W. Effect of surface piezoelectricity on the electromechanical behavior of a piezoelectric ring. Physica Status Solidi B, 243(4), 22-24(2006) [34] YAN, Z. and JIANG, L. Y. The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology, 22, 245703(2011) [35] YAN, Z. and JIANG, L. Y. Surface effects on the electromechanical coupling and bending behaviours of piezoelectric nanowires. Journal of Physics D:Applied Physics, 44, 075404(2011) [36] WANG, G. F. and FENG, X. Q. Effect of surface stresses on the vibration and buckling of piezoelectric nanowires. Europhysics Letters, 91, 56007(2010) [37] SAMAEI, A. T., GHESHLAGHI, B., and WANG, G. F. Frequency analysis of piezoelectric nanowires with surface effects. Current Applied Physics, 13, 2098-2102(2013) [38] JIANG, H., WANG, C. G., and LUO, Y. Vibration of piezoelectric nanobeams with an internal residual stress and a nonlinear strain. Physics Letters A, 379, 2631-2636(2015) [39] MAJDOUB, M. S., SHARMA, P., and CAGIN, T. Erratum:enhanced size dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect (Physical Review B, 77, 125424). Physical Review B, 79, 119904(2008) [40] LEECH, C. M. Beam theories:a variational approach. International Journal of Mechanical Engineering Education, 5, 81-87(1977) [41] LACHUT, M. J. and SADER, J. E. Effect of surface stress on the stiffness of cantilever plates. Physical Review Letters, 99, 206102(2007) |