[1] ANNAPUREDDY, V., PALNEEDI, H., HWANG, G. T., PEDDIGARI, M., JEONG, D. Y., YOON, W. H., KIM, H. K., and RYU, J. Magnetic energy harvesting with magnetoelectrics: an emerging technology for self-powered autonomous systems. Sustainable Energy & Fuels, 1(10), 2039-2052 (2017) [2] ZHAO, Y. R., LIU, Y., DU, J. W., ZHANG, X. D., ZHOU, J. Y., LI, X. P., WU, C. X., ZHU, Z. R., XIE, E. Q., and PAN, X. J. Facile synthesis of interconnected carbon network decorated with Co3O4 nanoparticles for potential supercapacitor applications. Applied Surface Science, 487, 442-451 (2019) [3] GORISHNYY, T., ULLAL, C. K., MALDOVAN, M., FYTAS, G., and THOMAS, E. L. Hypersonic phononic crystals. Physical Review Letters, 94, 115501 (2005) [4] EICHENFIELD, M., CHAN, J., CAMACHO, R. M., VAHALA, K. J., and PAINTER, O. Optomechanical crystals. nature, 462, 78-82 (2009) [5] GOMOPOULOS, N., MASCHKE, D., KOH, C. Y., THOMAS, E. L., TREMEL, W., BUTT, H. J., and FYTAS, G. One-dimensional hypersonic phononic crystals. Nano Letters, 10(3), 980-984 (2010) [6] LAVRIK, N. V., SEPANIAK, M. J., and DATSKOS, P. G. Cantilever transducers as a platform for chemical and biological sensors. Review of Scientific Instruments, 75, 2229-2253 (2004) [7] LU, P., HE, L. H., LEE, H. P., and LU, C. Thin plate theory including surface effects. International Journal of Solids and Structures, 43(16), 4631-4647 (2006) [8] WANG, G., WANG, J. W., CHEN, S. B., and WEN, J. H. Vibration attenuations induced by periodic arrays of piezoelectric patches connected by enhanced resonant shunting circuits. Smart Materials and Structures, 20, 125019 (2011) [9] WANG, Y. Z., LI, F. M., HUANG, W. H., JIANG, X., WANG, Y. S., and KISHIMOTO, K. Wave band gaps in two-dimensional piezoelectric/piezomagnetic phononic crystals. International Journal of Solids and Structures, 45, 4203 (2008) [10] BAYAT, A. and GORDANINEJAD, F. Dynamic response of a tunable phononic crystal under applied mechanical and magnetic loadings. Smart Materials and Structures, 24, 065027 (2015) [11] STAN, G., CIOBANU, C. V., PARTHANGAL, P. M., and COOK, R. F. Diameter-dependent radial and tangential elastic moduli of ZnO nanowires. Nano Letters, 7, 3691 (2007) [12] DAI, S. X. and PARK, H. S. Surface effects on the piezoelectricity of ZnO nanowires. Journal of the Mechanics and Physics of Solids, 61, 385 (2013) [13] GURTIN, M. E. and MURDOCH, A. I. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57, 291 (1975) [14] GURTIN, M. E. and MURDOCH, A. I. Surface stress in solids. International Journal of Solids and Structures, 14, 431 (1978) [15] MINDLIN, R. D. and TIERSTEN, H. F. Effects of couple-stresses in linear elasticity. Archive for Rational Mechanics and Analysis, 11, 415-448 (1962) [16] ERINGEN, A. C. Nonlocal polar elastic continua. International Journal of Engineering Science, 10, 1-16 (1972) [17] LAM, D. C., YANG, F., CHONG, A. C., WANG, J., and TONG, P. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 51, 1477-1508 (2003) [18] HUANG, G. Y. and YU, S. W. Effect of surface piezoelectricity on the electromechanical behavior of a piezoelectric ring. Physica Status Solidi, 243, 22-24 (2006) [19] WANG, G. F. and FENG, X. Q. Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Applied Physics Letters, 90, 231904 (2007) [20] LI, Y. S. and PAN, E. Bending of a sinusoidal piezoelectric nanoplate with surface effect. Composite Structures, 136, 45-55 (2016) [21] YAN, Z. and JIANG, L. Y. The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology, 22, 245703 (2011) [22] YAN, Z. and JIANG, L. Y. Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468(2147), 3458-3475 (2012) [23] ZHANG, C. L., CHEN, W. Q., and ZHANG, C. On propagation of anti-plane shear waves in piezoelectric plates with surface effect. Physics Letters A, 376, 3281-3286 (2012) [24] ZHANG, L. L., LIU, J. X., FANG, X. Q., and NIE, G. Q. Size-dependent dispersion characteristics in piezoelectric nanoplates with surface effects. Physica E: Low-Dimensional Systems and Nanostructures, 57, 169-174 (2014) [25] WU, B., ZHANG, C. L., CHEN, W. Q., and ZHANG, C. Z. Surface effects on anti-plane shear waves propagating in magneto-electro-elastic nanoplates. Smart Materials and Structures, 24, 095017 (2015) [26] ZHEN, N. and WANG, Y. S. Surface effects on bandgaps of transverse waves propagating in two dimensional phononic crystals with nanosized holes. Materials Science Forum, 675, 611-614 (2011) [27] ZHEN, N. and WANG, Y. S. Surface/interface effect on band structures of nanosized phononic crystals. Mechanics Research Communications, 46, 81-89 (2012) [28] LIU, W., CHEN, J. W., LIU, Y. Q., and SU, X. Y. Effect of interface/surface stress on the elastic wave band structure of two-dimensional phononic crystals. Physics Letters A, 376, 605 (2012) [29] CAI, B. and WEI, P. J. Surface/interface effects on dispersion relations of 2D phononic crystals with parallel nanoholes or nanofibers. Acta Mechanica, 224, 2749-2758 (2013) [30] QIAN, D. H. Bandgap properties of a piezoelectric phononic crystal nanobeam with surface effect. Journal of Applied Physics, 124, 055101 (2018) [31] SHI, S. H., LI, P., and JIN, F. The mechanical analysis of thermomagneto-electric laminated composites in nanoscale with the consideration of surface and flexoelectric effects. Smart Materials and Structures, 27, 015018 (2018) [32] WANG, W. J., LI, P., and JIN, F. An analytical model of a broadband magnetic energy nanoharvester array with consideration of flexoelectricity and surface effect. Journal of Physics D: Applied Physics, 51, 155304 (2018) [33] SHI, Y. Modeling of nonlinear magnetoelectric coupling in layered magnetoelectric nanocomposites with surface effect. Composite Structures, 185, 474-482 (2018) [34] SHI, Y., LI, N., YE, J. J., and MA, J. Enhanced magnetoelectric response in nanostructures due to flexoelectric and flexomagnetic effects. Journal of Magnetism and Magnetic Materials, 521, 167523 (2021) [35] SHI, Y., LI, N., WANG, Y. K., and YE, J. J. An analytical model for nonlinear magnetoelectric effect in laminated composites. Composite Structures, 263, 113652 (2021) [36] DING, R., SU, X. L., ZHANG, J. J., and GAO, Y. W. Tunability of longitudinal wave band gaps in one dimensional phononic crystal with magnetostrictive material. Journal of Applied Physics, 115, 074104 (2014) [37] ZHANG, S. Z., SHI, Y., and GAO, Y. W. Tunability of band structures in a two-dimensional magnetostrictive phononic crystal plate with stress and magnetic loadings. Physics Letters A, 381, 1055-1066 (2017) [38] GU, C. L. and JIN, F. Research on the tunability of point defect modes in a two-dimensional magneto-elastic phononic crystal. Journal of Physics D: Applied Physics, 49, 175103 (2016) [39] ZHANG, S. Z. and GAO, Y. W. Surface effect on band structure of flexural wave propagating in magneto-elastic phononic crystal nanobeam. Journal of Physics D: Applied Physics, 50, 445303 (2017) [40] Qian, D. H. Wave propagation in a thermo-magneto-mechanical phononic crystal nanobeam with surface effects. Journal of Materials Science, 54, 4766-4779 (2019) [41] MOFFETT, M. B., CLARK, A. E., WUN-FOGLE, M., LINBERG, J., TETER, J. P., and MCLAUGHLIN, E. A. Characterization of Terfenol-D for magnetostrictive transducers. The Journal of the Acoustical Society of America, 89, 1448-1455 (1991) [42] PEI, Y. M., FANG, D. N., and FENG, X. Magnetoelasticity of Tb0.3Dy0.7Fe1.95 alloys in a multiaxial stress-magnetic field space. Applied Physics Letters, 90, 182505 (2007) [43] LIU, X. E. and ZHENG, X. J. A nonlinear constitutive model for magnetostrictive materials. Acta Mechanica Sinica, 21, 278-278 (2005) [44] HELSZAJN, J., MCCUBBING, D., MACFARLANE, I., BUNCE, A., and MCKAY, M. Spatial shape demagnetising factors of disc, equilateral triangle and irregular hexagonal magnetic insulators. IEE Proceedings-Microwaves, Antennas and Propagation, 152, 201-208 (2005) [45] MINDLIN, R. High frequency vibrations of piezoelectric crystal plates. International Journal of Solids and Structures, 8, 895-906 (1972) [46] CHEN, T. Y., CHIU, M. S., and WENG, C. N. Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. Journal of Applied Physics, 100, 074308 (2006) [47] QIAN, D. H., BAO, S. Y., and SHEN, F. Studies on thermo-electro-mechanical coupling bandgaps of a piezoelectric phononic crystal nanoplate with surface effects. International Journal of Modern Physics B, 33, 1950369 (2019) |