[1] LARSSON, J., KAWAI, J., BODART, J., and BERMEJO-MORENO, I. Large eddy simulation with modeled wall-stress:recent progress and future directions. Mechanical Engineering Reviews, 3, 1500418(2016) [2] CHAPMAN, D. R. Computational aerodynamics development and outlook. AIAA Journal, 17, 1293-1313(1979) [3] PIOMELLI, U. and BALARAS, E. Wall-layer models for large-eddy simulations. Annual Review of Fluid Mechanics, 34, 349-374(2002) [4] BOSE, A. T. and PARK, G. I. Wall-modeled large-eddy simulation for complex turbulent flows. Annual Review of Fluid Mechanics, 50, 535-561(2018) [5] MITTAL, R. and IACCARINO, G. Immersed boundary methods. Annual Review of Fluid Mechanics, 37, 239-261(2005) [6] SOTIROPOULOS, F. and YANG, X. L. Immersed boundary methods for simulating fluidstructure interaction. Progress in Aerospace Sciences, 65, 1-21(2014) [7] TESSICINI, F., IACCARINO, G., FATICA, M., WANG, M., and VERZICCO, R. Wall modeling for large-eddy simulation using an immersed boundary method. Annual Research Brief, Stanford University, Palo Alto, 181-187(2002) [8] CRISTALLO, A. and VERZICCO, R. Combined immersed boundary/large-eddy-simulations of incompressible three dimensional complex flows. Flow, Turbulence and Combustion, 77, 3-26(2006) [9] CHOI, J., OBEROI, R. C., EDWARDS, J. R., and ROSATI, J. A. An immersed boundary method for complex incompressible flows. Journal of Computational Physics, 224, 757-784(2007) [10] ROMAN, F., ARMENIO, V., and FRHLICH, J. A simple wall-layer model for large eddy simulation with immersed boundary method. Physics of Fluids, 21, 101701(2009) [11] YANG, X., HE, G., and ZHANG, X. Towards large-eddy simulation of turbulent flows with complex geometric boundaries using immersed boundary method. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida (2010) [12] YANG, X. I. A., SADIQUE, J., MITTAL, R., and MENEVEAU, C. Integral wall model for large eddy simulations of wall-bounded turbulent flows. Physics of Fluids, 27, 025112(2015) [13] YANG, X. L., SOTIROPOULOS, F., CONZEMINUS, R. J., WACHTLER, J. N., and STRONG, M. B. Large-eddy simulation of turbulent flow past wind turbines/frams:the virtual wind simulator (VWS). Wind Energy, 18, 2025-2045(2015) [14] YANG, X. L. and SOTIROPOULOS, F. A new class of actuator surface models for wind turbines. Wind Energy, 21, 285-302(2018) [15] FOTI, D., YANG, X. L., and SOTIROPOULOS, F. Similarity of wake meandering for different wind turbine designs for different scales. Journal of Fluid Mechanics, 842, 5-25(2018) [16] NICOUD, F. and DUCROS, F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion, 62, 183-200(1999) [17] VANELLA, M., WANG, S., and BALARAS, E. Direct and large-eddy simulations of biological flows. Direct and Large-Eddy Simulation X, Springer, Berlin, 43-51(2017) [18] BALARAS, E. Modeling complex boundaries using an external force field on fixed cartesian grids in large-eddy simulations. Computer and Fluids, 33, 375-404(2004) [19] VANELLA, M. and BALARAS, E. A moving-least-squares reconstruction for embedded-boundary formulations. Journal of Computational Physics, 228, 6617-6628(2009) [20] CABOT, W. and MOIN, P. Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow. Flow, Turbulence and Combustion, 63, 269-291(2000) [21] WANG, M. and MOIN, P. Dynamic wall modeling for large-eddy simulation of complex turbulent flows. Physics of Fluids, 14, 2043-2051(2002) [22] DUPRAT, C., BALARAC, G., METAIS, O., CONGEDO, P. M., and BRUGIERE, O. A wall-layer model for large eddy simulations of turbulent flow with/out pressure gradient. Physics of Fluids, 23, 015101(2011) [23] VAN DRIEST, E. R. On turbulent flow near a wall. Journal of the Aeronautical Sciences, 23, 1007-1011(1956) [24] WERNER, H. and WENGLE, H. Large-eddy simulation of turbulent flow over and around a cube in a plate channel. Turbulent Shear Flow 8, Springer-Verlag, Berlin, 155-168(1991) [25] POSA, A. and BALARAS, E. A numerical investigation of the wake of an axisymmetric body with appendages. Journal of Fluid Mechanics, 792, 470-498(2010) [26] HUANG, T., LIU, H. L., GROVES, N., FORLINI, T., BLANTON, J., and GOWING, S. Measurements of flows over an axisymmetric body with various appendages in a wind tunnel:the DARPA SUBOFF experimental program. Proceedings of the 19th Symposium on Naval Hydrodynamics, National Academy Press, Korea (1994) [27] JIMENEZ, J. M., REYNOLDS, R. T., and SMITS, A. J. The intermediate wake of a body of revolution at high Reynolds numbers. Journal of Fluid Mechanics, 659, 516-539(2010) [28] JIMENEZ, J. M., REYNOLDS, R. T., and SMITS, A. J. The effects of fins on the intermediate wake of a submarine model. Journal of Fluids Engineering, 132, 031102(2010) [29] GROVES, N. C., HUANG, T. T., and CHANG, M. S. Geometric Characteristics of the DARPA SUBOFF Models, Technical Report (No. DTRC/SHD-1298-01), David Taylor Research Center, Bethesda (1989) |