[1] LEE, C. B. and WU, J. Z. Transition in wall-bounded flows. Advances in Mechanics, 61(3), 683-695(2009) [2] BATRA, R. C. and STEVENS, J. B. Adiabatic shear bands in axisymmetric impact and penetration problems. Computer Methods in Applied Mechanics & Engineering, 151(3-4), 325-342(1998) [3] SCHOCH, S., NIKIFORAKIS, N., and LEE, B. J. The propagation of detonation waves in nonideal condensed-phase explosives confined by high sound-speed materials. Physics of Fluids, 25(8), 452-457(2013) [4] DIMONTE, G., TERRONES, G., CHERNE, F. J., GERMANN, T. C., DUPONT, V., KADAU, K., BUTTLER, W. T., ORO, D. M., MORRIS, C., and PRESTON, D. L. Use of the RichtmyerMeshkov instability to infer yield stress at high-energy densities. Physical Review Letters, 107(26), 264502(2011) [5] LEE, C. B., PENG, H. W., YUAN, H. J., WU, J. Z., ZHOU, M. D., and FAZLE, H. Experimental studies of surface waves inside a cylindrical container. Journal of Fluid Mechanics, 677(3), 39-62(2011) [6] LEE, C. B., SU, Z., ZHONG, H. J., CHEN, S. Y., ZHOU, M. D., and WU, J. Z. Experimental investigation of freely falling thin disks, part 2:transition of three-dimensional motion from zigzag to spiral. Journal of Fluid Mechanics, 732(5), 77-104(2013) [7] GHAISAS, N. S., SUBRAMANIAM, A., and LELE, S. K. A unified high-order Eulerian method for continuum simulations of fluid flow and of elastic-plastic deformations in solids. Journal of Computational Physics, 371(22), 452-482(2018) [8] LI, X. L., FU, D. X., and MA, Y. W. Direct numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack. Physics of Fluids, 22(2), 025105(2010) [9] BARLOW, A. J., MAIRE, P. H., RIDER, W. J., RIEBEN, R. N., and SHASHKOV, M. J. Arbitrary Lagrangian-Eulerian methods for modeling high-speed compressible multimaterial flows. Journal of Computational Physics, 322, 603-665(2016) [10] GHAISAS, N. S., SUBRAMANIAM, A., and LELE, S. K. High-order Eulerian methods for elasticplastic flow in solids and coupling with fluid flows. 46th AIAA Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics, Washington, D. C. (2016) [11] GODUNOV, S. K. and ROMENSKⅡ, E. I. Elements of Continuum Mechanics and Conservation Laws, Kluwer Academic/Plenum Publishers, New York (2003) [12] PLOHR, B. J. and SHARP, D. H. A conservative Eulerian formulation of the equations for elastic flow. Advances in Applied Mathematics, 9(4), 481-499(1988) [13] HIRT, C. W. and NICHOLS, B. D. Volume of fluid method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225(1981) [14] BARTON, P. T., DEITERDING, R., MEIRON, D., and PULLIN, D. Eulerian adaptive finitedifference method for high-velocity impact and penetration problems. Journal of Computational Physics, 240(5), 76-99(2013) [15] ABGRALL, R. How to prevent pressure oscillations in multicomponent flow calculations:a quasi conservative approach. Journal of Computational Physics, 125(1), 150-160(1994) [16] BAER, M. R. and NUNZIATO, J. W. A two-phase mixture theory for the deflagration-todetonation transition (DDT) in reactive granular materials. International Journal of Multiphase Flow, 12(6), 861-889(1986) [17] SAUREL, R. and ABGRALL, R. A multiphase Godunov method for compressible multifluid and multiphase flows. Journal of Computational Physics, 150(2), 425-467(1999) [18] SAUREL, R., PETITPAS, F., and BERRY, R. A. Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. Journal of Computational Physics, 228(5), 1678-1712(2009) [19] KAPILA, A. K., MENIKOFF, R., BDZIL, J. B., SON, S. F., and STEWART, D. S. Two-phase modeling of deflagration-to-detonation transition in granular materials:reduced equations. Physics of Fluids, 13(10), 3002-3024(2001) [20] MURRONE, A. A five equation reduced model for compressible two phase flow problems. Journal of Computational Physics, 202(2), 664-698(2005) [21] FAVRIE, N., GAVRILYUK, S. L., and SAUREL, R. Solid-fluid diffuse interface model in cases of extreme deformations. Journal of Computational Physics, 228(16), 6037-6077(2009) [22] FAVRIE, N. and GAVRILYUK, S. L. Diffuse interface model for compressible fluid-compressible elastic-plastic solid interaction. Journal of Computational Physics, 231(7), 2695-2723(2012) [23] NDANOU, S., FAVRIE, N., and GAVRILYUK, S. Multi-solid and multi-fluid diffuse interface model:applications to dynamic fracture and fragmentation. Journal of Computational Physics, 295(25), 523-555(2015) [24] KLUTH, G. and DESPRÉS, B. Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme. Journal of Computational Physics, 229(1), 9092-9118(2010) [25] ABGRALL, R. and KARNI, S. Computations of compressible multifluids. Journal of Computational Physics, 169(2), 594-623(2001) [26] SHYUE, K. M. An efficient shock-capturing algorithm for compressible multicomponent problems. Journal of Computational Physics, 142(1), 208-242(1998) [27] SHYUE, K. M. Regular article:a fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state. Journal of Computational Physics, 156(1), 43-88(1999) [28] SHYUE, K. M. A fluid-mixture type algorithm for compressible multicomponent flow with MieGrüneisen equation of state. Journal of Computational Physics, 171(2), 678-707(2001) [29] MAIRE, P. H. and REBOURCET, B. A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids. Journal of Computational Physics, 235(2), 626-665(2013) [30] HE, Z. W., ZHANG, Y. S., LI, X. L., LI, L., and TIAN, B. L. Preventing numerical oscillations in the flux-split based finite difference method for compressible flows with discontinuities. Journal of Computational Physics, 300(5), 269-287(2015) |