Applied Mathematics and Mechanics (English Edition) ›› 2019, Vol. 40 ›› Issue (12): 1723-1740.doi: https://doi.org/10.1007/s10483-019-2545-8
Z. SHARIFI1, R. KHORDAD2, A. GHARAATI1, G. FOROZANI1
收稿日期:
2019-03-17
修回日期:
2019-07-03
出版日期:
2019-12-03
发布日期:
2019-11-20
通讯作者:
R. KHORDAD
E-mail:rezakh2025@yahoo.com
Z. SHARIFI1, R. KHORDAD2, A. GHARAATI1, G. FOROZANI1
Received:
2019-03-17
Revised:
2019-07-03
Online:
2019-12-03
Published:
2019-11-20
Contact:
R. KHORDAD
E-mail:rezakh2025@yahoo.com
摘要: In this paper, we analytically study vibration of functionally graded piezoelectric (FGP) nanoplates based on the nonlocal strain gradient theory. The top and bottom surfaces of the nanoplate are made of PZT-5H and PZT-4, respectively. We employ Hamilton's principle and derive the governing differential equations. Then, we use Navier's solution to obtain the natural frequencies of the FGP nanoplate. In the first step, we compare our results with the obtained results for the piezoelectric nanoplates in the previous studies. In the second step, we neglect the piezoelectric effect and compare our results with those obtained for the functionally graded (FG) nanoplates. Finally, the effects of the FG power index, the nonlocal parameter, the aspect ratio, and the lengthto-thickness ratio, and the nanoplate shape on natural frequencies are investigated.
中图分类号:
Z. SHARIFI, R. KHORDAD, A. GHARAATI, G. FOROZANI. An analytical study of vibration in functionally graded piezoelectric nanoplates: nonlocal strain gradient theory[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(12): 1723-1740.
Z. SHARIFI, R. KHORDAD, A. GHARAATI, G. FOROZANI. An analytical study of vibration in functionally graded piezoelectric nanoplates: nonlocal strain gradient theory[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(12): 1723-1740.
[1] | SLADEK, J., SLADEK, V., KASALA, J., and PAN, E. Nonlocal and gradient theories of piezoelectric nanoplates. Procedia Engineering, 190, 178-185(2017) |
[2] | LIANG, X., HU, S., and SHEN, S. Bernoulli-Euler dielectric beam model based on strain-gradient effect. Journal of Applied Mechanics, 80, 044502-044508(2013) |
[3] | GRAIGHEAD, H. G. Nanoelectromechanical systems. Science, 290, 1532-1535(2000) |
[4] | EKINCI, K. L. and ROUKES, M. L. Nanoelectromechanical systems. Review of Scientific Instruments, 76, 061101-061112(2005) |
[5] | DEQUESNES, M., ROTKIN, S. V., and ALURU, N. R. Calculation of pull-in voltages for carbonnanotube-based nanoelectromechanical switches. Nanotechnology, 13, 120-131(2002) |
[6] | SAHMANI, S. and FATTAHI, A. M. Small scale effects on buckling and postbuckling behaviors of axially loaded FGM nanoshells based on nonlocal strain gradient elasticity theory. Applied Mathematics and Mechanics (English Edition), 39, 561-580(2018) https://doi.org/10.1007/s10483-018-2321-8 |
[7] | FLECK, N. A., MULLER, G. M., ASHBY, M. F., and HUTCHINSON, J. W. Strain gradient plasticity:theory and experiment. Acta Metallurgica et Materialia, 42, 475-487(1994) |
[8] | LI, X. F., WANG, B. L., and LEE, K. Y. Size effects of the bending stiffness of nanowires. Journal of Applied Physics, 105, 074306-074311(2009) |
[9] | LI, L., TANG, H., and HU, Y. The effect of thickness on the mechanics of nanobeams. International Journal of Engineering Science, 123, 81-91(2018) |
[10] | ZHU, X. and LI, L. On longitudinal dynamics of nanorods. International Journal of Engineering Science, 120, 129-145(2017) |
[11] | MINDLIN, R. D. and TIERSTEN, H. F. Effects of couple-stresses in linear elasticity. Archive for Rational Mechanics and Analysis, 11, 415-448(1962) |
[12] | KOITER, W. T. Couple stresses in the theory of elasticity. Philosophical Transactions of the Royal Society of London B, 67, 17-44(1964) |
[13] | BEVER, M. and DUWEZ, P. Gradients in composite materials. Materials Science and Engineering, 10, 1-8(1972) |
[14] | JHA, D., KANT, T., and SINGH, R. A critical review of recent research on functionally graded plates. Composite Structures, 96, 833-849(2013) |
[15] | KARAMI, B., SHAHSAVARI, D., and JANGHORBAN, M. Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory. Mechanics of Advanced Materials and Structures, 25, 1047-1057(2018) |
[16] | LI, X., LI, L., HU, Y., DING, Z., and DENG, W. Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory. Composite Structures, 165, 250-265(2017) |
[17] | LYU, C. F., CHEN, W. Q., and LIM, C. W. Elastic mechanical behavior of nano-scaled FGM films incorporating surface energies. Composites Science and Technology, 69, 1124-1130(2009) |
[18] | SEDIGHI, H. M., DANESHMAND, F., and ABADYAN, M. Modified model for instability analysis of symmetric FGM double-sided nano-bridge:corrections due to surface layer, finite conductivity and size effect. Composite Structures, 132, 545-557(2015) |
[19] | SEDIGHI, H. M., KEIVANI, M., and ABADYAN, M. Modified continuum model for stability analysis of asymmetric FGM double-sided NEMS:corrections due to finite conductivity, surface energy and nonlocal effect. Composites Part B:Engineering, 83, 117-133(2015) |
[20] | EBRAHIMI, F., BARATI, M. R., and DABBAGH, A. A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates. International Journal of Engineering Science, 107, 169-182(2016) |
[21] | CIVALEK, Ö. Buckling analysis of composite panels and shells with different material properties by discrete singular convolution (DSC) method. Composite Structures, 161, 93-110(2017) |
[22] | AKGÖZ, B. and CIVALEK, Ö. Longitudinal vibration analysis of strain gradient bars made of functionally graded materials (FGM). Composites Part B:Engineering, 55, 263-268(2013) |
[23] | LEE, C. Y. and KIM, J. H. Hygrothermal postbuckling behavior of functionally graded plates. Composite Structures, 95, 278-282(2013) |
[24] | EBRAHIMI, F. and BARATI, M. R. Vibration analysis of piezoelectrically actuated curved nanosize FG beams via a nonlocal strain-electric field gradient theory. Mechanics of Advanced Materials and Structures, 47, 350-359(2018) |
[25] | SOBHY, M. An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment. International Journal of Mechanical Sciences, 110, 62-77(2016) |
[26] | JAFARI, A. A., JANDAGHIAN, A. A., and RAHMANI, O. Transient bending analysis of a functionally graded circular plate with integrated surface piezoelectric layers. International Journal of Mechanics and Material Engineering, 9, 8-21(2014) |
[27] | JANDAGHIAN, A. A., JAFARI, A. A., and RAHMANI, O. Vibrational response of functionally graded circular plate integrated with piezoelectric layers:an exact solution. Engineering Solid Mechanics, 2, 119-130(2014) |
[28] | JANDAGHIAN, A. A., JAFARI, A. A., and RAHMANI, O. Exact solution for transient bending of a circular plate integrated with piezoelectric layers. Applied Mathematics Modelling, 37, 7154-7163(2013) |
[29] | ZHANG, S., XIA, R., LEBRUN, L., ANDERSON, D., and SHROUT, T. R. Piezoelectric materials for high power, high temperature applications. Materials Letters, 59, 3471-3475(2005) |
[30] | MAHINZARE, M., RANJBARPUR, H., and GHADIRI, M. Free vibration analysis of a rotary smart two directional functionally graded piezoelectric material in axial symmetry circular nanoplate. Mechanical Systems and Signal Processing, 100, 188-207(2018) |
[31] | MAHINZARE, M., ALIPOUR, M. J., SADATSAKKAK, S. A., and GHADIRI, M. A nonlocal strain gradient theory for dynamic modeling of a rotary thermo piezoelectrically actuated nano FG circular plate. Mechanical Systems and Signal Processing, 115, 323-337(2019) |
[32] | QIU, J., TANI, J., UENO, T., MORITA, T., TAKAHASHI, H., and DU, H. Fabrication and high durability of functionally graded piezoelectric bending actuators. Smart Materials and Structures, 12, 115-121(2003) |
[33] | HE, J. and LILLEY, C. M. Surface effect on the elastic behavior of static bending nanowires. Nano Letters, 8, 1798-1802(2008) |
[34] | ASGHARI, M., RAHAEIFARD, M., KAHROBAIYAN, M., and AHMADIAN, M. The modified couple stress functionally graded Timoshenko beam formulation. Material Design, 32, 1435-1443(2011) |
[35] | ANSARI, R., GHOLAMI, R., and SAHMANI, S. Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory. Composite Structures, 94, 221-228(2011) |
[36] | RAHMANI, O. and PEDRAM, O. Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory. International Journal of Engineering Sciences, 77, 55-70(2014) |
[37] | THAI, H. T. A nonlocal beam theory for bending, buckling, and vibration of nanobeams. International Journal of Engineering Sciences, 52, 56-64(2012) |
[38] | TOUNSI, A., BENGUEDIAB, S., ADDA, B., SEMMAH, A., and ZIDOUR, M. Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes. Advances in Nano Research, 1, 1-11(2013) |
[39] | BENGUEDIAB, S., HEIRECHE, H., BOUSAHLA, A. A., TOUNSI, A., and BENZAIR, A. Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix. Advances in Nano Research, 3, 29-37(2015) |
[40] | BENGUEDIAB, S., TOUNSI, A., ZIDOUR, M., and SEMMAH, A. Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes. Composite Part B:Engineering, 57, 21-24(2014) |
[41] | ERINGEN, A. C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 54, 4703-4710(1983) |
[42] | ERINGEN, A. C. Nonlocal Continuum Field Theories, Springer, Berlin (2002) |
[43] | ERINGEN, A. C. and EDELEN, D. On nonlocal elasticity. International Journal of Engineering Sciences, 10, 233-248(1972) |
[44] | JANDAGHIAN, A. A. and RAHMANI, O. Vibration analysis of functionally graded piezoelectric nanoscale plates by nonlocal elasticity theory:an analytical solution. Superlattices and Microstructures, 100, 57-75(2016) |
[45] | EZZIN, H., MKAOIR, M., and AMOR, M. B. Rayleigh wave behavior in functionally graded magneto-electro-elastic material. Superlattices and Microstructures, 112, 455-469(2017) |
[46] | ARANI, A. G., KOLAHCHI, R., and VOSSOUGH, H. Buckling analysis and smart control of SLGS using elastically coupled PVDF nanoplate based on the nonlocal Mindlin plate theory. Physica B, 407, 4458-4469(2012) |
[47] | KE, L. L., LIU, C., and WANG, Y. S. Free vibration of nonlocal piezoelectric nanoplates under various boundary conditions. Physica E, 66, 93-106(2015) |
[48] | TANG, H., LI, L., and HU, Y. Coupling effect of thickness and shear deformation on size-dependent bending of micro/nano-scale porous beams. Applied Mathematical Modelling, 66, 527-547(2019) |
[49] | TANG, H., LI, L., HU, Y., MENG, W., and DUAN, K. Vibration of nonlocal strain gradient beams incorporating Poisson's ratio and thickness effects. Thin-Walled Structures, 137, 377-391(2019) |
[50] | NATARAJAN, S., CHAKRABORTY, S., THANGAVEL, M., BORDAS, S., and RABCZUK, T. Size-dependent free flexural vibration behavior of functionally graded nanoplates. Computational Material Sciences, 65, 74-80(2012) |
[1] | Pei ZHANG, P. SCHIAVONE, Hai QING. Dynamic stability analysis of porous functionally graded beams under hygro-thermal loading using nonlocal strain gradient integral model[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(12): 2071-2092. |
[2] | Xinte WANG, Juan LIU, Biao HU, Bo ZHANG, Huoming SHEN. Wave propagation responses of porous bi-directional functionally graded magneto-electro-elastic nanoshells via nonlocal strain gradient theory[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(10): 1821-1840. |
[3] | Lingkang ZHAO, Peijun WEI, Yueqiu LI. Free vibration of thermo-elastic microplate based on spatiotemporal fractional-order derivatives with nonlocal characteristic length and time[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(1): 109-124. |
[4] | Zhaonian LI, Juan LIU, Biao HU, Yuxing WANG, Huoming SHEN. Wave propagation analysis of porous functionally graded piezoelectric nanoplates with a visco-Pasternak foundation[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(1): 35-52. |
[5] | Jun JIN, Ningdong HU, Hongping HU. Size effects on the mixed modes and defect modes for a nano-scale phononic crystal slab[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(1): 21-34. |
[6] | Biao HU, Juan LIU, Yuxing WANG, Bo ZHANG, Jing WANG, Huoming SHEN. Study on wave dispersion characteristics of piezoelectric sandwich nanoplates considering surface effects[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(9): 1339-1354. |
[7] | Wenjun WANG, Feng JIN, Tianhu HE, Yongbin MA. Nonlinear magneto-mechanical-thermo coupling characteristic analysis for transport behaviors of carriers in composite multiferroic piezoelectric semiconductor nanoplates with surface effect[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(9): 1323-1338. |
[8] | Miao ZHANG, Junhong GUO, Yansong LI. Bending and vibration of two-dimensional decagonal quasicrystal nanoplates via modified couple-stress theory[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(3): 371-388. |
[9] | Shunzu ZHANG, Qianqian HU, Wenjuan ZHAO. Surface effect on band structure of magneto-elastic phononic crystal nanoplates subject to magnetic and stress loadings[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(2): 203-218. |
[10] | Tuoya SUN, Junhong GUO, E. PAN. Nonlocal vibration and buckling of two-dimensional layered quasicrystal nanoplates embedded in an elastic medium[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(8): 1077-1094. |
[11] | Rui SONG, S. SAHMANI, B. SAFAEI. Isogeometric nonlocal strain gradient quasi-three-dimensional plate model for thermal postbuckling of porous functionally graded microplates with central cutout with different shapes[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(6): 771-786. |
[12] | Shan ZENG, Kaifa WANG, Baolin WANG, Jinwu WU. Vibration analysis of piezoelectric sandwich nanobeam with flexoelectricity based on nonlocal strain gradient theory[J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(6): 859-880. |
[13] | M. ESMAEILZADEH, M. KADKHODAYAN, S. MOHAMMADI, G. J. TURVEY. Nonlinear dynamic analysis of moving bilayer plates resting on elastic foundations[J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(3): 439-458. |
[14] | Wenjie FENG, Zhen YAN, Ji LIN, C. Z. ZHANG. Bending analysis of magnetoelectroelastic nanoplates resting on Pasternak elastic foundation based on nonlocal theory[J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(12): 1769-1786. |
[15] | Bo ZHANG, Huoming SHEN, Juan LIU, Yuxing WANG, Yingrong ZHANG. Deep postbuckling and nonlinear bending behaviors of nanobeams with nonlocal and strain gradient effects[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(4): 515-548. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||