[1] WALL, T. F. Combustion processes for carbon capture. Proceedings of the Combustion Institute, 31(1), 31-47(2007) [2] CAVALIERE, A. and DE JOANNON, M. Mild combustion. Progress in Energy and Combustion Science, 30(4), 329-366(2004) [3] KIM, D. S. and LEE, C. S. Improved emission characteristics of HCCI engine by various premixed fuels and cooled EGR. Fuel, 85(5), 695-704(2006) [4] LIU, F., GUO, H., SMALLWOOD, G. J., and GÜLDER, Ö. L. The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame:implications for soot and NOx formation. Combustion and Flame, 125(1), 778-787(2001) [5] ERETE, J. I., HUGHES, K. J., MA, L., FAIRWEATHER, M., POURKASHANIAN, M., and WILLIAMS, A. Effect of CO2 dilution on the structure and emissions from turbulent non-premixed methane-air jet flames. Journal of the Energy Institute, 90(2), 191-200(2017) [6] PARK, J., HWANG, D. J., CHOI, J. G., LEE, K. M., KEEL, S. I., and SHIM, S. H. Chemical effects of CO2 addition to oxidizer and fuel streams on flame structure in H2-O2 counterflow diffusion flames. International Journal of Energy Research, 27(13), 1205-1220(2003) [7] MAMERI, A., TABET, F., and HADEF, A. Numerical investigation of biogas diffusion flames characteristics under several operation conditions in counter-flow configuration with an emphasis on thermal and chemical effects of CO2 in the fuel mixture. Heat and Mass Transfer, 53(8), 2701-2710(2017) [8] CHEN, L. and GHONIEM, A. F. Modeling CO2 chemical effects on CO formation in oxy-fuel diffusion flames using detailed, quasi-global, and global reaction mechanisms. Combustion Science and Technology, 186(7), 829-848(2014) [9] GLARBORG, P. and BENTZEN, L. L. Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane. Energy and Fuels, 22(1), 291-296(2007) [10] HOERLLE, C., ZIMMER, L., and PEREIRA, F. Numerical study of CO2 effects on laminar nonpremixed biogas flames employing a global kinetic mechanism and the flamelet-generated manifold technique. Fuel, 203, 671-685(2017) [11] CAO, S., MA, B., GIASSI, D., BENNETT, B. A. V., LONG, M. B., and SMOOKE, M. D. Effects of pressure and fuel dilution on coflow laminar methane-air diffusion flames:a computational and experimental study. Combustion Theory and Modeling, 22(2), 316-337(2017) [12] WILSON, D. A. and LYONS, K. M. Effects of dilution and co-flow on the stability of lifted non-premixed biogas-like flames. Fuel, 87(3), 405-413(2008) [13] CAO, S., MA, B., BENNETT, B., GIASSI, D., STOCKER, D., TAKAHASHI, F., LONG, M., and SMOOKE, M. A computational and experimental study of coflow laminar methane/air diffusion flames:effects of fuel dilution, inlet velocity, and gravity. Proceedings of the Combustion Institute, 35(1), 897-903(2015) [14] WATANABE, H., SHANBHOGUE, S. J., TAAMALLAH, S., CHAKROUN, N. W., and GHONIEM, A. F. The structure of swirl-stabilized turbulent premixed CH4/air and CH4/O2/CO2 flames and mechanisms of intense burning of oxy-flames. Combustion and Flame, 174, 111-119(2016) [15] GASCOIN, N., YANG, Q., and CHETEHOUNA, K. Thermal effects of CO2 on the NOx formation behavior in the CH4 diffusion combustion system. Applied Thermal Engineering, 110, 144-149(2017) [16] GU, M., CHU, H., and LIU, F. Effects of simultaneous hydrogen enrichment and carbon dioxide dilution of fuel on soot formation in an axisymmetric coflow laminar ethylene/air diffusion flame. Combustion and Flame, 166, 216-228(2016) [17] PARK, J., KIM, S. G., LEE, K. M., and KIM, T. K. Chemical effect of diluents on flame structure and NO emission characteristic in methane-air counterflow diffusion flame. International Journal of Energy Research, 26(13), 1141-1160(2002) [18] ZHUO, L., JIANG, Y., QIU, R., AN, J., and XU, W. Effects of fuel-side N2, CO2, H2O dilution on combustion characteristics and NOx formation of syngas turbulent nonpremixed jet flames. Journal of Engineering for Gas Turbines and Power, 136(6), 061505(2014) [19] WANG, L., LIU, Z., CHEN, S., ZHENG, C., and LI, J. Physical and chemical effects of CO2 and H2O additives on counterflow diffusion flame burning methane. Energy and Fuels, 27(12), 7602-7611(2013) [20] MIN, J., BAILLOT, F., GUO, H., DOMINGUES, E., TALBAUT, M., and PATTE-ROULAND, B. Impact of CO2, N2 or Ar diluted in air on the length and lifting behavior of a laminar diffusion flame. Proceedings of the Combustion Institute, 33(1), 1071-1078(2011) [21] XU, H., LIU, F., SUN, S., ZHAO, Y., MENG, S., and TANG, W. Effects of H2O and CO2 diluted oxidizer on the structure and shape of laminar coflow syngas diffusion flames. Combustion and Flame, 177, 67-78(2017) [22] SYRED, N. and BEER, J. Combustion in swirling flows:a review. Combustion and Flame, 23(2), 143-201(1974) [23] CHEN, R. H. and DRISCOLL, J. F. The role of the recirculation vortex in improving fuel-air mixing within swirling flames. International Symposium on Combustion, 22(1), 531-540(1989) [24] CHEN, R. H. and DRISCOLL, J. F. Nitric oxide levels of jet diffusion flames:effects of coaxial air and other mixing parameters. International Symposium on Combustion, 23(1), 281-288(1991) [25] CLAYPOLE, T. and SYRED, N. The effect of swirl burner aerodynamics on NOx formation. International Symposium on Combustion, 18(1), 81-89(1981) [26] DATTA, A. and SOM, S. Combustion and emission characteristics in a gas turbine combustor at different pressure and swirl conditions. Applied Thermal Engineering, 19(9), 949-967(1999) [27] DAY, M., TACHIBANA, S., BELL, J., LIJEWSKI, M., BECKNER, V., and CHENG, R. K. A combined computational and experimental characterization of lean premixed turbulent low swirl laboratory flames:I. methane flames. Combustion and Flame, 159(1), 275-290(2012) [28] GREGOR, M., SEFFRIN, F., FUEST, F., GEYER, D., and DREIZLER, A. Multi-scalar measurements in a premixed swirl burner using 1D Raman/Rayleigh scattering. Proceedings of the Combustion Institute, 32(2), 1739-1746(2009) [29] STOPPER, U., MEIER, W., SADANANDAN, R., STÖHR, M., AIGNER, M., and BULAT, G. Experimental study of industrial gas turbine flames including quantification of pressure influence on flow field, fuel/air premixing and flame shape. Combustion and Flame, 160(10), 2103-2118(2013) [30] AL-ABDELI, Y. M. and MASRI, A. R. Stability characteristics and flowfields of turbulent nonpremixed swirling flames. Combustion Theory and Modelling, 7(4), 731-766(2003) [31] CHENG, T., CHAO, Y. C., WU, D. C., YUAN, T., LU, C. C., CHENG, C. K., and CHANG, J. M. Effects of fuel-air mixing on flame structures and NOx emissions in swirling methane jet flames. International Symposium on Combustion, Elsevier, 27(1), 1229-1237(1998) [32] KALT, P. A., AL-ABDELI, Y. M., MASRI, A. R., and BARLOW, R. S. Swirling turbulent nonpremixed flames of methane:flow field and compositional structure. Proceedings of the Combustion Institute, 29(2), 1913-1919(2002) [33] MASRI, A., KALT, P., AL-ABDELI, Y., and BARLOW, R. Turbulence-chemistry interactions in non-premixed swirling flames. Combustion Theory and Modelling, 11(5), 653-673(2007) [34] MASRI, A. R., KALT, P. A., and BARLOW, R. S. The compositional structure of swirl-stabilised turbulent nonpremixed flames. Combustion and Flame, 137(1-2), 1-37(2004) [35] CHENG, T. S., CHAO, Y. C., WU, D. C., HSU, H. W., and YUAN, T. Effects of partial premixing on pollutant emissions in swirling methane jet flames. Combustion and Flame, 125(1-2), 865-878(2001) [36] VANOVERBERGHE, K. P., VAN DEN BULCK, E. V., and TUMMERS, M. J. Confined annular swirling jet combustion. Combustion Science and Technology, 175(3), 545-578(2003) [37] BEÉR, J. M. and CHIGIER, N. A. Combustion Aerodynamics, Robert E. Krieger Publishing Company, New York (1972) [38] JENKINS, B. and MULLINGER, P. Industrial and Process Furnaces:Principles, Design and Operation, Elsevier, Amsterdam (2014) [39] KEMPF, A., MALALASEKERA, W., RANGA-DINESH, K., and STEIN, O. Large eddy simulations of swirling non-premixed flames with flamelet models:a comparison of numerical methods. Flow, Turbulence and Combustion, 81(4), 523-561(2008) [40] DE MEESTER, R., NAUD, B., MAAS, U., and MERCI, B. Transported scalar PDF calculations of a swirling bluff body flame SM1 with a reaction diffusion manifold. Combustion and Flame, 159(7), 2415-2429(2012) [41] KASHIR, B., TABEJAMAAT, S., and JALALATIAN, N. A numerical study on combustion characteristics of blended methane-hydrogen bluff-body stabilized swirl diffusion flames. International Journal of Hydrogen Energy, 40(18), 6243-6258(2015) [42] MARDANI, A. and FAZLOLLAHI-GHOMSHI, A. Numerical investigation of a double-swirled gas turbine model combustor using a RANS approach with different turbulence-chemistry interaction models. Energy and Fuels, 30(8), 6764-6776(2016) [43] MARDANI, A. and GHOMSHI, A. F. Numerical study of oxy-fuel MILD (moderate or intense low-oxygen dilution combustion) combustion for CH4-H2 fuel. Energy, 99, 136-151(2016) [44] ROHANI, B. and SAQR, K. M. Effects of hydrogen addition on the structure and pollutant emissions of a turbulent unconfined swirling flame. International Communications in Heat and Mass Transfer, 39(5), 681-688(2012) [45] YANG, X., HE, Z., DONG, S., and TAN, H. Combustion characteristics of bluff-body turbulent swirling flames with coaxial air microjet. Energy and Fuels, 31(12), 14306-14319(2017) [46] MÜLLER, H., FERRARO, F., and PFITZNER, M. Implementation of a steady laminar flamelet model for non-premixed combustion in LES and RANS simulations. 8th International OpenFOAM Workshop, Korea (2013) [47] GUPTA, A. and KUMAR, R. Three-dimensional turbulent swirling flow in a cylinder:experiments and computations. International Journal of Heat and Fluid Flow, 28(2), 249-261(2007) [48] MENTER, F. R., KUNTZ, M., and LANGTRY, R. Ten years of industrial experience with the SST turbulence model. Turbulence, Heat and Mass Transfer, 4(1), 625-632(2003) [49] CHEN, L. and GHONIEM, A. F. Simulation of oxy-coal combustion in a 100 kWth test facility using RANS and LES:a validation study. Energy and Fuels, 26(8), 4783-4798(2012) [50] FU, J., TANG, Y., LI, J., MA, Y., CHEN, W., and LI, H. Four kinds of the two-equation turbulence model's research on flow field simulation performance of PDF's porous media and swirl-type regeneration burner. Applied Thermal Engineering, 93, 397-404(2016) [51] SAFAVI, M. and AMANI, E. A comparative study of turbulence models for non-premixed swirlstabilized flames. Journal of Turbulence, 19(11-12), 1017-1050(2018) [52] POINSOT, T. and VEYNANTE, D. Theoretical and Numerical Combustion, R. T. Edwards, Inc., Booval (2005) [53] MALALASEKERA, W., RANGA-DINESH, K., IBRAHIM, S. S., and MASRI, A. R. LES of recirculation and vortex breakdown in swirling flames. Combustion Science and Technology, 180(5), 809-832(2008) [54] STEIN, O. and KEMPF, A. LES of the Sydney swirl flame series:a study of vortex breakdown in isothermal and reacting flows. Proceedings of the Combustion Institute, 31(2), 1755-1763(2007) [55] PETERS, N. Turbulent Combustion, Cambridge University Press, Cambridge (2000) [56] JANICKA, J. and PETERS, N. Prediction of turbulent jet diffusion flame lift-off using a PDF transport equation. International Symposium on Combustion, 19(1), 367-374(1982) [57] TURNS, S. R. An Introduction to Combustion:Concepts and Applications, McGraw-Hill, Boston (2000) [58] ILBAS, M. The effect of thermal radiation and radiation models on hydrogen-hydrocarbon combustion modelling. International Journal of Hydrogen Energy, 30(10), 1113-1126(2005) [59] CHRISTO, F. C. and DALLY, B. B. Modeling turbulent reacting jets issuing into a hot and diluted coflow. Combustion and Flame, 142(1-2), 117-129(2005) [60] WELLER, H. G., TABOR, G., JASAK, H., and FUREBY, C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 12(6), 620-631(1998) [61] ISSA, R. I. Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1), 40-65(1986) |