[1] MENG, X., YANG, L., MAO, Z., FERRANDIS, J. D., and KAENIADAKIS, G. E. Learning functional priors and posteriors from data and physics. Journal of Computational Physics, 457, 111073(2022) [2] MENG, X. and KARNIADAKIS, G. E. A composite neural network that learns from multi fidelity data:application to function approximation and inverse PDE problems. Journal of Computational Physics, 401, 109020(2020) [3] MENG, X., WANG, Z., FAN, D., TRIANTAFYLLOU, M. S., and KARNIADAKIS, G. E. A fast multi-fidelity method with uncertainty quantification for complex data correlations:application to vortex-induced vibrations of marine risers. Computer Methods in Applied Mechanics and Engineering, 386, 114212(2021) [4] MENG, X., BABAEE, H., and KARNIADAKIS, G. E. Multi-fidelity bayesian neural networks:algorithms and applications. Journal of Computational Physics, 438, 110361(2021) [5] RAISSI, M., PERDIKARIS, P., and KARNIADAKIS, G. E. Physics-informed neural networks:a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686-707(2019) [6] SIRIGNANO, J. and SPILIOPOULOS, K. DGM:a deep learning algorithm for solving partial differential equations. Journal of Computational Physics, 375, 1339-1364(2018) [7] HAN, J. and JENTZEN, A. W. E. Solving high-dimensional partial differential equations using deep learning. Proceedings of the National Academy of Sciences, 115(34), 8505-8510(2018) [8] WEINAN, E. and YU, B. The deep Ritz method:a deep learning-based numerical algorithm for solving variational problems. Communications in Mathematics and Statistics, 6(1), 1-12(2018) [9] LU, L., JIN, P., PANG, G., ZHANG, Z., and KARNIADAKIS, G. E. Learning nonlinear opera-tors via DeepONet based on the universal approximation theorem of operators. Nature Machine Intelligence, 3(3), 218-229(2021) [10] LI, Z., KOVACHKI, N., AZIZZADENESHELI, K., LIU, B., BHATTACHARYA, K., STUART, A., and ANANDKUMAR, A. Fourier neural operator for parametric partial differential equations. arXiv Preprint, arXiv:2010.08895(2020) https://doi.org/10.48550/arXiv.2010.08895 [11] ABDAR, M., POURPANAH, F., HUSSAIN, S., REZAZADEGAN, D., LIU, L., GHAVAMZADEH, M., FIEGUTH, P., CAO, X. C., KHOSRAVI, A., ACHARYA, U. R., MAKARENKOV, V., and NAHAVANDI, S. A review of uncertainty quantification in deep learning:techniques, applications and challenges. Information Fusion, 76, 243-297(2021) [12] PICKERING, E., GUTH, S., KARNIADAKIS, G. E., and SAPSIS, T. P. Discovering and forecasting extreme events via active learning in neural operators. Nature Computational Science, 2(12), 823-833(2022) [13] LINKA, K., SCHÄFER, A., MENG, X., ZOU, Z., KARNIADAKIS, G. E., and KUHL, E. Bayesian physics informed neural networks for real-world nonlinear dynamical systems. Computer Methods in Applied Mechanics and Engineering, 402, 115346(2022) [14] NEAL, R. M. Bayesian Learning for Neural Networks, Springer Science and Business Media, Berlin (2012) [15] YANG, L., MENG, X., and KARNIADAKIS, G. E. B-PINNs:Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data. Journal of Computational Physics, 425, 109913(2021) [16] LAKSHMINARAYANAN, B., PRITZEL, A., and BLUNDELL, C. Simple and scalable predictive uncertainty estimation using deep ensembles. 31st Annual Conference on Neural Information Processing Systems, Long Beach, State of California (2017) [17] PEARCE, T., LEIBFRIED, F., and BRINTRUP, A. Uncertainty in neural networks:approx-imately Bayesian ensembling. International Conference on Artificial Intelligence and Statistics, 234-244(2020) [18] ZHANG, D., LU, L., GUO, L., and KARNIADAKIS, G. E. Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems. Journal of Computational Physics, 397, 108850(2019) [19] YAO, J., PAN, W., GHOSH, S., and DOSHI-VELEZ, F. Quality of uncertainty quantificatio for Bayesian neural network inference. arXiv Preprint, arXiv:1906.09686(2019) https://doi.org/10.48550/arXiv.1906.09686 [20] PSAROS, A. F., MENG, X., ZOU, Z., GUO, L., and KARNIADAKIS, G. E. Uncertainty quantification in scientific machine learning:methods, metrics, and comparisons. Journal of Computational Physics, 477, 111902(2023) [21] CHEN, T., FOX, E., and GUESTRIN, C. Stochastic gradient Hamiltonian Monte Carlo. International Conference on Machine Learning, 1683-1691(2014) [22] BLUNDELL, C., CORNEBISE, J., KAVUKCUOGLU, K., and WIERSTRA, D. Weight uncertainty in neural networks. arXiv Preprint, arXiv:1505.05424(2015) https://doi.org/10.48550/arXiv.1505.05424 [23] REZENDE, D. and MOHAMED, S. Variational inference with normalizing flows. International Conference on Machine Learning, 1530-1538(2015) [24] ZOU, Z., MENG, X., PSAROS, A. F., and KARNIADAKIS, G. E. NeuralUQ:a comprehensive library for uncertainty quantification in neural differential equations and operators. arXiv Preprint, arXiv:2208.11866(2022) https://doi.org/10.48550/arXiv.2208.11866 [25] DINH, L., SOHL-DICKSTEIN, J., and BENGIO, S. Density estimation using real NVP. arXiv Preprint, arXiv:1605.08803(2016) https://doi.org/10.48550/arXiv.1605.08803 [26] PAPAMAKARIOS, G., PAVLAKOU, T., and MURRAY, I. Masked autoregressive flow for density estimation. 31st Annual Conference on Neural Information Processing Systems, Long Beach, State of California (2017) [27] KINGMA, D. P., SALIMANS, T., JOZEFOWICZ, R., CHEN, X., SUTSKEVER, I., and WELLING, M. Improved variational inference with inverse autoregressive flow. 30th Conference on Neural Information Processing Systems, Barcelona, Spain (2016) [28] KINGMA, D. P. and DHARIWAL, P. Glow:generative flow with invertible 1×1 convolutions. 31st Annual Conference on Neural Information Processing Systems, Long Beach, State of California (2017) [29] LU, L., MENG, X., CAI, S., MAO, Z., GOSWAMI, S., ZHANG, Z., and KARNIADAKIS, G. E. A comprehensive and fair comparison of two neural operators (with practical extensions) based on fair data. Computer Methods in Applied Mechanics and Engineering, 393, 114778(2022) [30] HOFFMAN, M. D. and GELMAN, A. The No-U-Turn sampler:adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1), 1593-1623(2014) [31] LAO, J., SUTER, C., LANGMORE, I., CHIMISOV, C., SAXENA, A., SOUNTSOV, P., MOORE, D., SAUROUS, R. A., HOFFMAN, M. D., and DILLON, J. V. Tfp. mcmc:modern Markov chain Monte Carlo tools built for modern hardware. arXiv Preprint, arXiv:2002.01184 https://doi.org/10.48550/arXiv.2002.01184 |