[1] CHESSHIRE, G. and HENSHAW, W. Composite overlapping meshes for the solution of partial deferential equations. Journal of Computational Physics, 90(1), 1-64(1990) [2] HENSHAW, W. and CHAND, K. A composite grid solver for conjugate heat transfer in fluidstructure systems. Journal of Computational Physics, 228(10), 3708-3741(2009) [3] HENSHAW, W., KREISS, H. O., and REYNA, L. A fourth-order-accurate difference approximation for the incompressible Navier-Stokes equations. Computers and Fluids, 23(4), 575-593(1994) [4] KREISS, H. O. and PETERSSON, N. A. A second order accurate embedded boundary method for the wave equation with Dirichlet data. SIAM Journal on Scientific Computing, 27(4), 1141-1167(2004) [5] KREISS, H. O., PETERSSON, N. A., and YSTRÖM, J. Difference approximations for the second order wave equation. SIAM Journal on Numerical Analysis, 40(5), 1940-1967(2002) [6] KREISS, H. O., PETERSSON, N. A., and YSTRÖM, J. Difference approximations of the Neumann problem for the second order wave equation. SIAM Journal on Numerical Analysis, 42(3), 1292-1323(2004) [7] PESKIN, S. The immersed boundary method. Acta Numerica, 11, 479-517(2002) [8] CHENG, Z., LIU, Y., ZHANG, M., and WANG, J. IB-WENO method for incompressible flow with elastic boundaries. Journal of Computational and Applied Mathematics, 362, 498-509(2018) [9] QIAN, Y., D'HUMIÈRES, D., and LALLEMAND, P. Lattice BGK models for Navier-Stokes equation. Europhysics Letters, 17(6), 479-484(1992) [10] SHAN, X. and CHEN, H. Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E, 47(3), 1815-1819(1993) [11] CHEN, S. and GRAY, D. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 30(1), 329-364(1998) [12] TAN, S. and SHU, C. W. Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws. Journal of Computational Physics, 229(21), 8144-8166(2010) [13] TAN, S., WANG, C., SHU, C. W., and NING, J. Efficient implementation of high order inverse Lax-Wendroff boundary treatment for conservation laws. Journal of Computational Physics, 231(6), 2510-2527(2012) [14] LU, J., FANG, J., TAN, S., SHU, C. W., and ZHANG, M. Inverse Lax-Wendroff procedure for numerical boundary conditions of convection-diffusion equations. Journal of Computational Physics, 317, 276-300(2016) [15] FILBET, F. and YANG, C. An inverse Lax-Wendroff method for boundary conditions applied to Boltzmann type models. Journal of Computational Physics, 245(15), 43-61(2013) [16] LI, T., SHU, C. W., and ZHANG, M. Stability analysis of the inverse Lax-Wendroff boundary treatment for high order central difference schemes for diffusion equations. Journal of Scientific Computing, 70, 576-607(2017) [17] LI, T., SHU, C. W., and ZHANG, M. Stability analysis of the inverse Lax-Wendroff boundary treatment for high order upwind-biased finite difference schemes. Journal of Computational and Applied Mathematics, 299, 140-158(2016) [18] TAN, S. and SHU, C. W. Inverse Lax-Wendroff procedure for numerical boundary conditions of hyperbolic equations:survey and new developments. Advances in Applied Mathematics, Modeling, and Computational Science, 18, 41-63(2013) [19] FORRER, H. and BERGER, M. Flow simulations on Cartesian grids involving complex moving geometries. International Series of Numerical Mathematics, 129, 315-324(1999) [20] HU, X., KHOO, B., ADAMS, N., and HUANG, F. A conservative interface method for compressible flows. Journal of Computational Physics, 219(2), 553-578(2006) [21] TAN, S. and SHU, C. W. A high order moving boundary treatment for compressible inviscid flows. Journal of Computational Physics, 230(15), 6023-6036(2011) [22] JIANG, G. and SHU, C. W. Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 126(1), 202-228(1996) [23] SHU, C. W. and STANLEY, O. Efficient implementation of essentially non-oscillatory shockcapturing schemes. Journal of Computational Physics, 77(2), 439-471(1988) [24] FALCOVITZ, J., ALFANDARY, G., and HANOCH, G. A two-dimensional conservation laws scheme for compressible flows with moving boundaries. Journal of Computational Physics, 138(1), 83-102(1997) [25] ARIENTI, M., HUNG, P., MORANO, E., and SHEPHERD, J. E. A level set approach to Eulerian Lagrangian coupling. Journal of Computational Physics, 185(1), 213-251(2003) [26] SHYUE, K. M. A Moving-boundary tracking algorithm for inviscid compressible flow. Hyperbolic Problems:Theory, Numerics, Applications, Springer, Berlin, 989-996(2008) |