[1] WANG, Z. L. and WU, W. Z. Piezotronics and piezo-phototronics-fundamentals and applications. National Science Review, 1, 62-90(2013) [2] GAO, P. X., SONG, J. H., LIU, J., and WANG, Z. L. Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices. Advanced Materials, 19, 67-72(2007) [3] CHOI, M. Y., CHOI, D., JIN, M. J., KIM, I., KIM, S. H., CHOI, J. Y., LEE, S. Y., KIM, J. M., and KIM, S. W. Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Advanced Materials, 21, 2185-2189(2009) [4] ROMANO, G., MANTINI, G., GARLO, A. D., D'AMICO, A., FALCONI, C., and WANG, Z. L. Piezoelectric potential in vertically aligned nanowires for high output nanogenerators. Nanotechnology, 22, 465401(2011) [5] BÜYÜKKÖSE, S., HERNANDEZ-MINGUEZ, A., VRATZOV, B., SOMASCHINI, C.,GEELHAAR, L., RIECHERT, H., WIE DER VAN, W. G., and SANTOS, P. V. High-frequency acoustic charge transport in GaAs nanowires. Nanotechnology, 25, 135204(2014) [6] LIU, W., ZHANG, A. H., ZHANG, Y., and WANG, Z. L. First principle simulations of piezotronic transistors. Nano Energy, 14, 355-363(2015) [7] WU, Y. R. and SINGH, J. Metal piezoelectric semiconductor field effect transistors for piezoelectric strain sensors. Applied Physics Letters, 85, 1223-1225(2004) [8] WANG, Z. L. ZnO nanowire and nanobelt platform for nanotechnology. Materials Science and Engineering:R:Reports, 64, 33-71(2009) [9] ZHAO, Z. F., PU, X., HAN, C. B., DU, C. H., LI, L. X., JIANG, C. Y., HU, W. G., and WANG, Z. L. Piezotronic effect in polarity-controlled GaN nanowires. ACS Nano, 9, 8578-8583(2015) [10] WANG, Z. L. Novel nanostructures of semiconducting oxides. Advanced Materials, 15, 432-436(2003) [11] ZHANG, C. L., WANG, X. Y., CHEN, W. Q., and YANG, J. S. An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force. Smart Materials and Structures, 26, 025030(2017) [12] GAO, Y. F. and WANG, Z. L. Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotrionics. Nano Letters, 7, 2499-2505(2007) [13] GAO, Y. F. and WANG, Z. L. Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Letters, 9, 1103-1110(2009) [14] FAN, S. Q., LIANG, Y. X., XIE, J. M., and HU, Y. T. Exact solutions to the electromechanical quantities inside a statically-bent circular ZnO nanowire by taking into account both the piezoelectric property and the semiconducting performance:part I-linearized analysis. Nano Energy, 40, 82-87(2017) [15] LIANG, Y. X., FAN, S. Q., CHEN, X. D., and HU, Y. T. Nonlinear effect of carrier drift on the performance of an n-type ZnO nanowire nanogenerator by coupling piezoelectric effect and semiconduction. Beilstein Journal of Nanotechnology, 9, 1917-1925(2018) [16] LEW, L. C., VOON, Y., and WILLATZEN, M. Electromechanical phenomena in semiconductor nanostructures. Journal of Applied Physics, 109, 031101(2011) [17] ZHANG, R. Y. and HU, H. P. A few transient effects in AT-cut quartz thickness-shear resonators. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 58, 2758-2762(2011) [18] ZHANG, Y., LIU, Y., and WANG, Z. L. Fundamental theory of piezotronics. Advanced Materials, 23, 3004-3013(2011) [19] LUO, Y. X., CHENG, R. R., ZHANG, C. L., CHEN, W. Q., and YANG, J. S. Electromechanical fields near a circular PN junction between two piezoelectric semiconductors. Acta Mechanica Solida Sinica, 31, 127-140(2018) [20] YANG, W. L., FAN, S. Q., LIANG, Y. X., and HU, Y. T. Prestress-loading effect on the current-voltage characteristics of a piezoelectric p-n junction together with the corresponding mechanical tuning laws. Beilstein Journal of Nanotechnology, 10, 1833-1843(2019) [21] YANG, G. Y., YANG, L., DU, J. K., WANG, J., and YANG, J. S. PN junctions with coupling to bending deformation in composite piezoelectric semiconductor fibers. International Journal of Mechanical Sciences, 173, 105421(2020) [22] JIAO, F. Y., WEI, P. J., ZHOU, X. L., and ZHOU, Y. H. The dispersion and attenuation of the multi-physical fields coupled waves in a piezoelectric semiconductor. Ultrasonics, 92, 68-78(2019) [23] JIAO, F. Y., WEI, P. J., ZHOU, Y. H., and ZHOU, X. L. Wave propagation through a piezoelectric semiconductor slab sandwiched by two piezoelectric half-spaces. European Journal of Mechanics-A/Solids, 75, 70-81(2019) [24] ZHU, F., JI, S. H., QIAN, Z. H., and YANG, J. S. Study on the influence of semiconductive property for the improvement of nanogenerator by wave mode approach. Nano Energy, 52, 474-484(2018) [25] CAO, X. S., HU, S. M., LIU, J. J., and SHI, J. P. Generalized Rayleigh surface waves in a piezoelectric semiconductor half space. Meccanica, 54, 271-281(2019) [26] QU, Y. L., JIN, F., and YANG, J. S. Torsion of a flexoelectric semiconductor rod with a rectangular cross section. Archive of Applied Mechanics, 91, 2027-2038(2021) [27] DAI, X. Y., ZHU, F., QIAN, Z. H., and YANG, J. S. Electric potential and carrier distribution in a piezoelectric semiconductor nanowire in time-harmonic bending vibration. Nano Energy, 43, 22-28(2018) [28] ZHI, W., ZHAO, M. H., and YANG, J. S. Amplitude evolution equation and transient effects in piezoelectric crystal resonators. Journal of Applied Physics, 114, 144510(2013) [29] LIANG, Y. X., YANG, W. L., and YANG, J. S. Transient bending vibration of a piezoelectric semiconductor nanofiber under a suddenly applied shear force. Acta Mechanica Solida Sinica, 32, 688-697(2019) [30] YANG, W. L., HU, Y. T., and YANG, J. S. Transient extensional vibration in a ZnO piezoelectric semiconductor nanofiber under a suddenly applied end force. Materials Research Express, 6, 025902(2018) [31] ZHANG, C. L., WANG, X. Y., CHEN, W. Q., and YANG, J. S. Propagation of extensional waves in a piezoelectric semiconductor rod. AIP Advances, 6, 045301(2016) [32] AULD, B. A. Acoustic Fields and Waves in Solids, Vol. I, Wiley, New York (1973) [33] LIANG, Y. X. and HU, Y. T. Effect of interaction among the three time scales on the propagation characteristics of coupled waves in a piezoelectric semiconductor rod. Nano Energy, 68, 104345(2020) [34] ARFKEN, G. B. and WEBER, H. J. Mathematical Methods for Physicists, 4th ed., Academic Press, San Diego (1995) |