[1] SHECHTMAN, D., BLECH, I., GRATIAS, D., and CAHN, J. W. Metallic phase with long-range orientational order and no translational symmetry. Physical Review Letters, 53, 1951–1953(1984) [2] FAN, T. Y. The Mathematical Theory of Elasticity of Quasicrystals and Its Application, Springer, New York (2016) [3] LOUZGUINE-LUZGIN, D. V. and INOUE, A. Formation and properties of quasicrystals. Annual Review of Materials Research, 38, 403–423(2008) [4] BINDI, L., YAO, N., LIN, C., HOLLISTER, L. S., ANDRONICOS, C. L., DISTLER, V. V., EDDY, M. P., KOSTIN, A., KRYACHKO, V., MACPHERSON, G. J., STEINHARDT, W. M., YUDOVSKAYA, M., and STEINHARDT, P. J. Natural quasicrystal with decagonal symmetry. Scientific Reprts, 5, 9111(2015) [5] INOUE, A., KIMURA, H., and AMIYA, K. Recent progress in bulk glassy, nano-quasicrystalline and nanocrystalline alloys. Materials Science and Engineering A, 375, 16–30(2004) [6] USTINOV, A. I., MOVCHAN, B. A., and POLISHCHUK, S. S. Formation of nanoquasicrystalline Al-Cu-Fe coatings at electron beam physical vapour deposition. Scripta Materialia, 50, 533–537(2004) [7] GALANO, M., MARSH, A., AUDEBERT, F., XU, W., and RAMUNDO, M. Nanoquasicrystalline Al-based matrix/γ-Al2O3 nanocomposites. Journal of Alloys Compounds, 643, S99(2015) [8] INOUE, A., KONG, F., ZHU, S., LIU, C. T., and AL-MARZOUKI, F. Development and applications of highly functional Al-based materials by use of metastable phases. Materials Research, 18(6), 1414–1425(2015) [9] HUANG, H., KATO, H., CHEN, C. L., WANG, Z. C., and YUAN, G. Y. The effect of nanoquasicrystals on mechanical properties of as-extruded Mg-Zn-Gd alloy. Materials Letters, 79, 281–283(2012) [10] YANG, L. Z., GAO, Y., PAN, E., and WAKSMANSK, N. An exact closed-form solution for a multilayered one-dimensional orthorhombic quasicrystal plate. Acta Mechanica, 226, 3611–3621(2015) [11] YANG, L. Z., GAO, Y., PAN, E., and WAKSMANSK, N. An exact solution for a multilayered two-dimensional decagonal quasicrystal plate. International Journal of Solids and Structures, 51, 1737–1749(2014) [12] WAKSMANSK, N., PAN, E., YANG, L. Z., and GAO, Y. Free vibration of a multilayered onedimensional quasi-crystal plate. Journal of Vibration and Acoustics, 136, 041019(2014) [13] ERINGEN, A. C. Nonlocal Continuum Field Theories, Springer, New York (2002) [14] AIFANTIS, E. C. Strain gradient interpretation of size effects. International Journal of Fracture, 95, 299–314(1999) [15] YANG, F., CHONG, A. C. M., LAM, D. C. C., and TONG, P. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 39, 2731-43(2002) [16] WAKSMANSK, N. and PAN, E. Nonlocal analytical solutions for multilayered one-dimensional quasicrystal nanoplates. Journal of Vibration and Acoustics, 139(2), 021006(2017) [17] ZHANG, L., GUO, J. H., and XING, Y. M. Bending deformation of multilayered one-dimensional hexagonal piezoelectric quasicrystal nanoplates with nonlocal effect. International Journal of Solids and Structures, 132-133, 278–302(2018) [18] LI, Y., YANG, L. Y., ZHANG, L. L., and GAO, Y. Size-dependent effect on functionally graded multilayered two-dimensional quasicrystal nanoplates under patch/uniform loading. Acta Mechanica, 229(8), 3501–3515(2018) [19] ZHANG, L., GUO, J. H., and XING, Y. M. Nonlocal analytical solution of functionally graded multilayered one-dimensional hexagonal piezoelectric quasicrystal nanoplates. Acta Mechanica, 230(5), 1781–1810(2019) [20] GUO, J. H., SUN, T. Y., and PAN, E. Three-dimensional nonlocal buckling of composite nanoplates with coated one-dimensional quasicrystal in an elastic medium. International Journal of Solids and Structures, 185-186, 272–280(2020) [21] LI, Y., YANG, L. Y., ZHANG, L. L., and GAO, Y. Nonlocal free and forced vibration of multilayered two-dimensional quasicrystal nanoplates. Mechanics of Advanced Materials and Structures, 28(12), 1216–1226(2019) [22] MAZUR, O., KURPA, L., and AWREJCEWICZ, J. Vibrations and buckling of orthotropic smallscale plates with complex shape based on modified couple stress theory. Journal of Applied Mathematics and Mechanics, 100(11), 3–14(2020) [23] TSIATAS, G. C. and YIOTIS, A. J. Size effect on the static, dynamic and buckling analysis of orthotropic Kirchhoff-type skew micro-plates based on a modified couple stress theory: comparison with the nonlocal elasticity theory. Acta Mechanica, 226(4), 1267–1281(2014) [24] MIANDOAB, M. E., PISHKENARI, N. H., YOUSEFI-KOMA, A., and HOORZAD, H. Polysilicon nano-beam model based on modified couple stress and Eringen’s nonlocal elasticity theories. Physica E, 63, 223–228(2014) [25] TILMANS, H. A. and LEGTENBERG, R. Electrostatically driven vacuum-encapsulated polysilicon resonators, Part II: theory and performance. Sensors and Actuators A, 45, 67–84(1994) [26] LEI, J., HE, Y. M., GUO, S., LI, Z. K., and LIU, D. B. Size-dependent vibration of nickel cantilever microbeams: experiment and gradient elasticity. AIP Advances, 6, 1050202(2016) [27] LI, Z. K., HE, Y. M., LEI, J., GUO, S., LIU, D. B., and WANG, L. A standard experimental method for determining the material length scale based on modified couple stress theory. International Journal of Mechanical Sciences, 141, 198(2018) [28] LI, X, F., GUO, J. H., and SUN, T. Y. Bending deformation of multilayered one-dimensional quasicrystal nanoplates based on the modified couple stress theory. Acta Mechanica Solida Sinica, 32(6), 785–802(2019) [29] GUO, J. H., ZHANG, M., CHEN, W. Q., and ZHANG, X. Y. Free and forced vibration of layered one-dimensional quasicrystal nanoplates with modified couple-stress effect. SCIENCE CHINA Physics, Mechanics & Astronomy, 63(7), 274621(2020) [30] DING, D. H., YANG, W. G., HU, C. A., and WANG, R. H. Generalized elasticity theory of quasicrystals. Physical Review B, 48(10), 7003–7010(1993) [31] SUN, T. Y., GUO, J. H., and PAN. E. Nonlocal vibration and buckling of two-dimensional layered quasicrystal nanoplates embedded in an elastic medium. Applied Mathematics and Mechanics (English Edition), 42(8), 1077–1094(2021) https://doi.org/10.1007/s10483-021-2743-6 [32] ZHANG, L., GUO, J. H., and XING, Y. M. Bending analysis of functionally graded onedimensional hexagonal piezoelectric quasicrystal multilayered simply supported nanoplates based on nonlocal strain gradient theory. Acta Mechanica Solida Sinica, 34(2), 237–251(2021) [33] LI, Y. S. and XIAO, T. Free vibration of the one-dimensional piezoelectric quasicrystal microbeams based on modified couple stress theory. Applied Mathematical Modelling, 96, 733–750(2021) [34] CHEN, W. Q. and DING, H. J. On free vibration of a functionally graded piezoelectric rectangular plate. Acta Mechanica, 153(3-4), 207–216(2002) [35] GUO, J. H., CHEN, J. Y., and PAN, E. Free vibration of three-dimensional anisotropic layered composite nanoplates based on modified couple-stress theory. Physica E, 87, 98–106(2017) [36] LUBENSKY, T. C., RAMASWAMY, S., and JONER, J. Hydrodynamics of icosahedral quasicrystals. Physical Review B, 32(11), 7444–7452(1985) [37] LAM, D. C. C., YANG, F., CHONG, A. C. M., WANG, J., and TONG, P. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 51, 1477–1508(2003) [38] LIEBOLD, C. and MLLER, W. H. Comparison of gradient elasticity models for the bending of micromaterials. Computational Materials Science, 116, 52–61(2016) [39] PARK, S. K. and GAO, X. L. Bernoulli-Euler beam model based on a modified couple stress theory. Journal of Micromechanics and Microengineering, 16, 2355–2359(2006) [40] KHORSHIDI, M. A. The material length scale parameter used in couple stress theories is not a material constant. International Journal of Engineering Science, 133, 15–25(2018) [41] JOMEHZADEH, E., NOORI, H. R., and SAIDI, A.R. The size-dependent vibration analysis of micro-plates based on a modified couple stress theory. Physica E, 43, 877–883(2011) [42] TSIATAS, G. C. A new Kirchhoff plate model based on a modified couple stress theory. International Journal of Solids and Structures, 46, 2757–2764(2009) [43] ZHAO, Z. N. and GUO, J. H. Surface effects on a mode-III reinforced nano-elliptical hole embedded in one-dimensional hexagonal piezoelectric quasicrystals. Applied Mathematics and Mechanics (English Edition), 42(5), 625–640(2021) https://doi.org/10.1007/s10483-021-2721-5 [44] REDDY, J. N. Theory and Analysis of Elastic Plates, Taylor and Francis, Texas (1999) [45] AJRI, M. and FAKHRABADI, M. M. S. Nonlinear free vibration of viscoelastic nanoplates based on modified couple stress theory. Journal of Computional Applied Mechanics, 49(1), 44–53(2018) [46] WAKSMANSK, N., PAN, E., YANG, L. Z., and GAO, Y. Harmonic response of multilayered one-dimensional quasicrystal plates subjected to patch loading. Journal of Sound and Vibration, 375, 237–253(2016) |