[1] ZOU, H. X., ZHAO, L. C., GAO, Q. H., ZUO, L., LIU, F. R., TAN, T., WEI, K. X., and ZHANG, W. M. Mechanical modulations for enhancing energy harvesting:principles, methods and applications. Applied Energy, 255, 113871(2019) [2] WANG, D., HAO, Z., CHEN, F., and CHEN, Y. Nonlinear energy harvesting with dual resonant zones based on rotating system. Applied Mathematics and Mechanics (English Edition), 42(2), 275-290(2021) https://doi.org/10.1007/s10483-021-2698-8 [3] YANG, K., SU, K., WANG, J., WANG, J., YIN, K., and LITAK, G. Piezoelectric wind energy harvesting subjected to the conjunction of vortex-induced vibration and galloping:comprehensive parametric study and optimization. Smart Materials and Structures, 29, 75035(2020) [4] DUAN, X. J., CAO, D. X., LI, X. G., and SHEN, Y. J. Design and dynamic analysis of integrated architecture for vibration energy harvesting including piezoelectric frame and mechanical amplifier. Applied Mathematics and Mechanics (English Edition)42(6), 755-770(2021) https://doi.org/10.1007/s10483-021-2741-8 [5] LI, D. S., GUO, T., LI, R. N., YANG, C., CHENG, Z. X., LI, Y., and HU, W. R. A nonlinear model for aerodynamic configuration of wake behind horizontal-axis wind turbine. Applied Mathematics and Mechanics (English Edition), 40(9), 1313-1326(2019) https://doi.org/10.1007/s10483-019-2536-9 [6] ZHAO, L. C., ZOU, H. X., YAN, G., LIU, F. R., TAN, T., WEI, K. X., and ZHANG, W. M. Magnetic coupling and flextensional amplification mechanisms for high-robustness ambient wind energy harvesting. Energy Conversion and Management, 201, 112166(2019) [7] HAJHOSSEINI, M. and RAFEEYAN, M. Modeling and analysis of piezoelectric beam with periodically variable cross-sections for vibration energy harvesting. Applied Mathematics and Mechanics (English Edition), 37(8), 1053-1066(2016) https://doi.org/10.1007/s10483-016-2117-8 [8] LAI, Z., WANG, S., ZHU, L., ZHANG, G., WANG, J., YANG, K., and YURCHENKO, D. A hybrid piezo-dielectric wind energy harvester for high-performance vortex-induced vibration energy harvesting. Mechanical Systems and Signal Processing, 150, 107212(2021) [9] ZHAO, L. C., ZOU, H. X., YAN, G., LIU, F. R., TAN, T., ZHANG, W. M., PENG, Z. K., and MENG, G. A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester. Applied Energy, 239, 735-746(2019) [10] ZENG, Q., WU, Y., TANG, Q., LIU, W., WU, J., ZHANG, Y., YIN, G., YANG, H., YUAN, S., TAN, D., HU, C., and WANG, X. A high-efficient breeze energy harvester utilizing a full-packaged triboelectric nanogenerator based on flow-induced vibration. Nano Energy, 70, 104524(2020) [11] WANG, J., GENG, L., DING, L., ZHU, H., and YURCHENKO, D. The state-of-the-art review on energy harvesting from flow-induced vibrations. Applied Energy, 267, 114902(2020) [12] ZHOU, Z., QIN, W., ZHU, P., and SHANG, S. Scavenging wind energy by a Y-shaped bi-stable energy harvester with curved wings. Energy, 153, 400-412(2018) [13] SHI, M., HOLMES, A. S., and YEATMAN, E. M. Piezoelectric wind velocity sensor based on the variation of galloping frequency with drag force. Applied Physics Letters, 116, 264101(2020) [14] ZHOU, C. F., ZOU, H. X., WEI, K. X., and LIU, J. G. Enhanced performance of piezoelectric wind energy harvester by a curved plate. Smart Materials and Structures, 28, 125022(2019) [15] WANG, Q., ZOU, H. X., ZHAO, L. C., LI, M., WEI, K. X., HUANG, L. P., and ZHANG, W. M. A synergetic hybrid mechanism of piezoelectric and triboelectric for galloping wind energy harvesting. Applied Physics Letters, 117, 043902(2020) [16] HARVEY, T. S., KHOVANOV, I. A., and DENISSENKO, P. A galloping energy harvester with flow attachment. Applied Physics Letters, 114, 104103(2019) [17] LIU, Y. and HU, C. Triboelectric nanogenerators based on elastic electrodes. Nanoscale, 12, 20118-20130(2020) [18] WANG, J., DING, W., PAN, L., WU, C., YU, H., YANG, L., LIAO, R., and WANG, Z. L. Self-powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator. ACS Nano, 12, 3954-3963(2018) [19] CHEN, S., GAO, C., TANG, W., ZHU, H., HAN, Y., JIANG, Q., LI, T., CAO, X., and WANG, Z. L. Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator. Nano Energy, 14, 217-225(2015) [20] LIU, S., LI, X., WANG, Y., YANG, Y., MENG, L., CHENG, T., and WANG, Z. L. Magnetic switch structured triboelectric nanogenerator for continuous and regular harvesting of wind energy. Nano Energy, 83, 105851(2021) [21] GUO, Y., CHEN, Y., MA, J., ZHU, H., CAO, X., WANG, N., and WANG, Z. L. Harvesting wind energy:a hybridized design of pinwheel by coupling triboelectrification and electromagnetic induction effects. Nano Energy, 60, 641-648(2019) [22] ZHAO, J., MU, J., CUI, H., HE, W., ZHANG, L., HE, J., GAO, X., LI, Z., HOU, X., and CHOU, X. Hybridized triboelectric-electromagnetic nanogenerator for wind energy harvesting to realize real-time power supply of sensor nodes. Advanced Materials Technologies, 6, 2001022(2021) [23] LU, P., PANG, H., REN, J., FENG, Y., AN, J., LIANG, X., JIANG, T., and WANG, Z. L. Swing-structured triboelectric-electromagnetic hybridized nanogenerator for breeze wind energy harvesting. Advanced Materials Technologies, 6, 2100496(2021) [24] RAHMAN, M. T., SALAUDDIN, M., MAHARJAN, P., RASEL, M. S., CHO, H., and PARK, J. Y. Natural wind-driven ultra-compact and highly efficient hybridized nanogenerator for selfsustained wireless environmental monitoring system. Nano Energy, 57, 256-268(2019) [25] WANG, P., PAN, L., WANG, J., XU, M., DAI, G., ZOU, H., DONG, K., and WANG, Z. L. An ultra-low-friction triboelectric-electromagnetic hybrid nanogenerator for rotation energy harvesting and self-powered wind speed sensor. ACS Nano, 12, 9433-9440(2018) [26] FAN, X., HE, J., MU, J., QIAN, J., ZHANG, N., YANG, C., HOU, X., GENG, W., WANG, X., and CHOU, X. Triboelectric-electromagnetic hybrid nanogenerator driven by wind for selfpowered wireless transmission in Internet of Things and self-powered wind speed sensor. Nano Energy, 68, 104319(2019)746(2019) [10] ZENG, Q., WU, Y., TANG, Q., LIU, W., WU, J., ZHANG, Y., YIN, G., YANG, H., YUAN, S., TAN, D., HU, C., and WANG, X. A high-efficient breeze energy harvester utilizing a full-packaged triboelectric nanogenerator based on flow-induced vibration. Nano Energy, 70, 104524(2020) [11] WANG, J., GENG, L., DING, L., ZHU, H., and YURCHENKO, D. The state-of-the-art review on energy harvesting from flow-induced vibrations. Applied Energy, 267, 114902(2020) [12] ZHOU, Z., QIN, W., ZHU, P., and SHANG, S. Scavenging wind energy by a Y-shaped bi-stable energy harvester with curved wings. Energy, 153, 400-412(2018) [13] SHI, M., HOLMES, A. S., and YEATMAN, E. M. Piezoelectric wind velocity sensor based on the variation of galloping frequency with drag force. Applied Physics Letters, 116, 264101(2020) [14] ZHOU, C. F., ZOU, H. X., WEI, K. X., and LIU, J. G. Enhanced performance of piezoelectric wind energy harvester by a curved plate. Smart Materials and Structures, 28, 125022(2019) [15] WANG, Q., ZOU, H. X., ZHAO, L. C., LI, M., WEI, K. X., HUANG, L. P., and ZHANG, W. M. A synergetic hybrid mechanism of piezoelectric and triboelectric for galloping wind energy harvesting. Applied Physics Letters, 117, 043902(2020) [16] HARVEY, T. S., KHOVANOV, I. A., and DENISSENKO, P. A galloping energy harvester with flow attachment. Applied Physics Letters, 114, 104103(2019) [17] LIU, Y. and HU, C. Triboelectric nanogenerators based on elastic electrodes. Nanoscale, 12, 20118-20130(2020) [18] WANG, J., DING, W., PAN, L., WU, C., YU, H., YANG, L., LIAO, R., and WANG, Z. L. Self-powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator. ACS Nano, 12, 3954-3963(2018) [19] CHEN, S., GAO, C., TANG, W., ZHU, H., HAN, Y., JIANG, Q., LI, T., CAO, X., and WANG, Z. L. Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator. Nano Energy, 14, 217-225(2015) [20] LIU, S., LI, X., WANG, Y., YANG, Y., MENG, L., CHENG, T., and WANG, Z. L. Magnetic switch structured triboelectric nanogenerator for continuous and regular harvesting of wind energy. Nano Energy, 83, 105851(2021) [21] GUO, Y., CHEN, Y., MA, J., ZHU, H., CAO, X., WANG, N., and WANG, Z. L. Harvesting wind energy:a hybridized design of pinwheel by coupling triboelectrification and electromagnetic induction effects. Nano Energy, 60, 641-648(2019) [22] ZHAO, J., MU, J., CUI, H., HE, W., ZHANG, L., HE, J., GAO, X., LI, Z., HOU, X., and CHOU, X. Hybridized triboelectric-electromagnetic nanogenerator for wind energy harvesting to realize real-time power supply of sensor nodes. Advanced Materials Technologies, 6, 2001022(2021) [23] LU, P., PANG, H., REN, J., FENG, Y., AN, J., LIANG, X., JIANG, T., and WANG, Z. L. Swing-structured triboelectric-electromagnetic hybridized nanogenerator for breeze wind energy harvesting. Advanced Materials Technologies, 6, 2100496(2021) [24] RAHMAN, M. T., SALAUDDIN, M., MAHARJAN, P., RASEL, M. S., CHO, H., and PARK, J. Y. Natural wind-driven ultra-compact and highly efficient hybridized nanogenerator for selfsustained wireless environmental monitoring system. Nano Energy, 57, 256-268(2019) [25] WANG, P., PAN, L., WANG, J., XU, M., DAI, G., ZOU, H., DONG, K., and WANG, Z. L. An ultra-low-friction triboelectric-electromagnetic hybrid nanogenerator for rotation energy harvesting and self-powered wind speed sensor. ACS Nano, 12, 9433-9440(2018) [26] FAN, X., HE, J., MU, J., QIAN, J., ZHANG, N., YANG, C., HOU, X., GENG, W., WANG, X., and CHOU, X. Triboelectric-electromagnetic hybrid nanogenerator driven by wind for selfpowered wireless transmission in Internet of Things and self-powered wind speed sensor. Nano Energy, 68, 104319(2019)958 Qiong WANG et al. [27] SUN, W., DING, Z., QIN, Z., CHU, F., and HAN, Q. Wind energy harvesting based on fluttering double-flag type triboelectric nanogenerators. Nano Energy, 70, 104526(2020) [28] WANG, Y., WANG, J., XIAO, X., WANG, S., KIEN, P. T., DONG, J., MI, J., PAN, X., WANG, H., and XU, M. Multi-functional wind barrier based on triboelectric nanogenerator for power generation, self-powered wind speed sensing and highly efficient windshield. Nano Energy, 73, 104736(2020) [29] XU, M., WANG, Y. C., ZHANG, S. L., DING, W., CHENG, J., HE, X., ZHANG, P., WANG, Z., PAN, X., and WANG, Z. L. An aeroelastic flutter based triboelectric nanogenerator as a selfpowered active wind speed sensor in harsh environment. Extreme Mechanics Letters, 15, 122-129(2017) [30] ZHAO, Z., XIONG, P., DU, C., LI, L., JIANG, C., HU, W., and WANG, Z. L. Freestanding flagtype triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions. ACS Nano, 10(2), 1780-1787(2016) [31] ZHANG, L., MENG, B., XIA, Y., DENG, Z., DAI, H., HAGEDORN, P., PENG, Z., and WANG, L. Galloping triboelectric nanogenerator for energy harvesting under low wind speed. Nano Energy, 70, 104477(2020) [32] LIU, F. R., ZHANG, W. M., PENG, Z. K., and MENG, G. Fork-shaped bluff body for enhancing the performance of galloping-based wind energy harvester. Energy, 183(15), 92-105(2019) |