[1] TRI-NGUYEN, H., GENOV, D. A., and BARDAWEEL, H. Vibration energy harvesting using magnetic spring based nonlinear oscillators:design strategies and insights. Applied Energy, 269, 115102(2020) [2] HEIDARI, A., ESMAEEL-NEZHAD, A., TAVAKOLI, A., REZAEI, N., GANDOMAN, F. H., MIVEH, M. R., AHMADI, A., and MALEKPOUR, M. A comprehensive review of renewable energy resources for electricity generation in Australia. Frontiers in Energy, 14(3), 510-529(2020) [3] DAQAQ, M. F., MASANA, R., ERTURK, A., and QUINN, D. D. On the role of nonlinearities in vibratory energy harvesting:a critical review and discussion. Applied Mechanics Reviews, 66(4), 045501(2014) [4] CAO, D. X., LEADENHAM, S., and ERTURK, A. Internal resonance for nonlinear vibration energy harvesting. European Physical Journal:Special Topics, 224(14-15), 2867-2880(2015) [5] ZOU, H. X., ZHAO, L. C., GAO, Q. H., ZUO, L., LIU, F. R., TAN, T., WEI, K. X., and ZHANG, W. M. Mechanical modulations for enhancing energy harvesting:principles, methods and applications. Applied Energy, 255, 113871(2019) [6] BEARMAN, R. D. Flow-Induced Vibration, Van Nostrand Reinhold Company, New York (2001) [7] NGUYEN, L. Vortex-and Wake-Induced Vibrations in an Array of Cylinders, Ph. D. dissertation, University of Southampton, Southampton (2015) [8] ZHU, H., TANG, T., YANG, H., WANG, J., SONG, J., and PENG, G. The state-of-the-art brief review on piezoelectric energy harvesting from flow-induced vibration. Shock and Vibration, 2021, 8861821(2021) [9] WANG, J., YURCHENKO, D., HU, G., ZHAO, L., TANG, L., and YANG, Y. Perspectives in flow-induced vibration energy harvesting. Applied Physics Letters, 119(10), 100502(2021) [10] WANG, J., GENG, L., DING, L., ZHU, H., and YURCHENKO, D. The state-of-the-art review on energy harvesting from flow-induced vibrations. Applied Energy, 267, 114902(2020) [11] LYU, Y., SUN, L., BERNITSAS, M. M., and SUN, H. A comprehensive review of nonlinear oscillators in hydrokinetic energy harnessing using flow-induced vibrations. Renewable and Sustainable Energy Reviews, 150, 111388(2021) [12] ZHAO, L. and YANG, Y. Toward small-scale wind energy harvesting:design, enhancement, performance comparison, and applicability. Shock and Vibration, 2017, 3585972(2017) [13] ROSTAMI, A. B. and ARMANDEI, M. Renewable energy harvesting by vortex-induced motions:review and benchmarking of technologies. Renewable and Sustainable Energy Reviews, 70, 193-214(2017) [14] THIRIA, B. On flapping flight mechanisms and their applications to wind and marine energy harvesting. Current Opinion in Insect Science, 30, 39-45(2018) [15] DE-MARQUI, C., TAN, D., and ERTURK, A. On the electrode segmentation for piezoelectric energy harvesting from nonlinear limit cycle oscillations in axial flow. Journal of Fluids and Structures, 82, 492-504(2018) [16] WANG, J., ZHOU, S., ZHANG, Z., and YURCHENKO, D. High-performance piezoelectric wind energy harvester with Y-shaped attachments. Energy Conversion and Management, 181, 645-652(2019) [17] MCNEIL, I. and ABDELKEFI, A. Nonlinear modeling and vibration mitigation of combined vortex-induced and base vibrations through energy harvesting absorbers. Communications in Nonlinear Science and Numerical Simulation, 95, 105655(2021) [18] WANG, J. L., GENG, L. F., DING, L., ZHU, H. J., and YURCHENKO, D. The state-of-the-art review on energy harvesting from flow-induced vibrations. Applied Energy, 267, 114902(2020) [19] CAGNEY, N. and BALABANI, S. Streamwise vortex-induced vibrations of cylinders with one and two degrees of freedom. Journal of Fluid Mechanics, 758, 702-727(2014) [20] ZHANG, M., ZHANG, C., ABDELKEFI, A., YU, H., GAIDAI, O., QIN, X., ZHU, H., and WANG, J. Piezoelectric energy harvesting from vortex-induced vibration of a circular cylinder:effect of Reynolds number. Ocean Engineering, 235, 109378(2021) [21] DAI, H., ABDELKEFI, A., and WANG, L. Theoretical modeling and nonlinear analysis of piezoelectric energy harvesting from vortex-induced vibrations. Journal of Intelligent Material Systems and Structures, 25(14), 1861-1874(2014) [22] WANG, J., HU, G., SU, Z., LI, G., ZHAO, W., TANG, L., and ZHAO, L. A cross-coupled dualbeam for multi-directional energy harvesting from vortex induced vibrations. Smart Materials and Structures, 28(12), 12LT02(2019) [23] WANG, W., HE, X., WANG, X., WANG, M., and XUE, K. A bioinspired structure modification of piezoelectric wind energy harvester based on the prototype of leaf veins. Sensors and Actuators A:Physical, 279, 467-473(2018) [24] WANG, W., WANG, X., HE, X., WANG, M., SHU, H., and XUE, K. Comparisons of bioinspired piezoelectric wind energy harvesters with different layout of stiffeners based on leaf venation prototypes. Sensors and Actuators A:Physical, 298, 111570(2019) [25] WANG, S., LIAO, W., ZHANG, Z., LIAO, Y., YAN, M., and KAN, J. Development of a novel non-contact piezoelectric wind energy harvester excited by vortex-induced vibration. Energy Conversion and Management, 235, 113980(2021) and applications. Applied Energy, 255, 113871(2019) [6] BEARMAN, R. D. Flow-Induced Vibration, Van Nostrand Reinhold Company, New York (2001) [7] NGUYEN, L. Vortex-and Wake-Induced Vibrations in an Array of Cylinders, Ph. D. dissertation, University of Southampton, Southampton (2015) [8] ZHU, H., TANG, T., YANG, H., WANG, J., SONG, J., and PENG, G. The state-of-the-art brief review on piezoelectric energy harvesting from flow-induced vibration. Shock and Vibration, 2021, 8861821(2021) [9] WANG, J., YURCHENKO, D., HU, G., ZHAO, L., TANG, L., and YANG, Y. Perspectives in flow-induced vibration energy harvesting. Applied Physics Letters, 119(10), 100502(2021) [10] WANG, J., GENG, L., DING, L., ZHU, H., and YURCHENKO, D. The state-of-the-art review on energy harvesting from flow-induced vibrations. Applied Energy, 267, 114902(2020) [11] LYU, Y., SUN, L., BERNITSAS, M. M., and SUN, H. A comprehensive review of nonlinear oscillators in hydrokinetic energy harnessing using flow-induced vibrations. Renewable and Sustainable Energy Reviews, 150, 111388(2021) [12] ZHAO, L. and YANG, Y. Toward small-scale wind energy harvesting:design, enhancement, performance comparison, and applicability. Shock and Vibration, 2017, 3585972(2017) [13] ROSTAMI, A. B. and ARMANDEI, M. Renewable energy harvesting by vortex-induced motions:review and benchmarking of technologies. Renewable and Sustainable Energy Reviews, 70, 193-214(2017) [14] THIRIA, B. On flapping flight mechanisms and their applications to wind and marine energy harvesting. Current Opinion in Insect Science, 30, 39-45(2018) [15] DE-MARQUI, C., TAN, D., and ERTURK, A. On the electrode segmentation for piezoelectric energy harvesting from nonlinear limit cycle oscillations in axial flow. Journal of Fluids and Structures, 82, 492-504(2018) [16] WANG, J., ZHOU, S., ZHANG, Z., and YURCHENKO, D. High-performance piezoelectric wind energy harvester with Y-shaped attachments. Energy Conversion and Management, 181, 645-652(2019) [17] MCNEIL, I. and ABDELKEFI, A. Nonlinear modeling and vibration mitigation of combined vortex-induced and base vibrations through energy harvesting absorbers. Communications in Nonlinear Science and Numerical Simulation, 95, 105655(2021) [18] WANG, J. L., GENG, L. F., DING, L., ZHU, H. J., and YURCHENKO, D. The state-of-the-art review on energy harvesting from flow-induced vibrations. Applied Energy, 267, 114902(2020) [19] CAGNEY, N. and BALABANI, S. Streamwise vortex-induced vibrations of cylinders with one and two degrees of freedom. Journal of Fluid Mechanics, 758, 702-727(2014) [20] ZHANG, M., ZHANG, C., ABDELKEFI, A., YU, H., GAIDAI, O., QIN, X., ZHU, H., and WANG, J. Piezoelectric energy harvesting from vortex-induced vibration of a circular cylinder:effect of Reynolds number. Ocean Engineering, 235, 109378(2021) [21] DAI, H., ABDELKEFI, A., and WANG, L. Theoretical modeling and nonlinear analysis of piezoelectric energy harvesting from vortex-induced vibrations. Journal of Intelligent Material Systems and Structures, 25(14), 1861-1874(2014) [22] WANG, J., HU, G., SU, Z., LI, G., ZHAO, W., TANG, L., and ZHAO, L. A cross-coupled dualbeam for multi-directional energy harvesting from vortex induced vibrations. Smart Materials and Structures, 28(12), 12LT02(2019) [23] WANG, W., HE, X., WANG, X., WANG, M., and XUE, K. A bioinspired structure modification of piezoelectric wind energy harvester based on the prototype of leaf veins. Sensors and Actuators A:Physical, 279, 467-473(2018) [24] WANG, W., WANG, X., HE, X., WANG, M., SHU, H., and XUE, K. Comparisons of bioinspired piezoelectric wind energy harvesters with different layout of stiffeners based on leaf venation prototypes. Sensors and Actuators A:Physical, 298, 111570(2019) [25] WANG, S., LIAO, W., ZHANG, Z., LIAO, Y., YAN, M., and KAN, J. Development of a novel non-contact piezoelectric wind energy harvester excited by vortex-induced vibration. Energy Conversion and Management, 235, 113980(2021)974 Dongxing CAO, Junru WANG, Xiangying GUO, S. K. LAI, and Yongjun SHEN [26] SU, W. J. and LIN, W. Y. Design and analysis of a vortex-induced bi-directional piezoelectric energy harvester. International Journal of Mechanical Sciences, 173, 105457(2020) [27] ZHENG, M., HAN, D., GAO, S., and WANG, J. Numerical investigation of bluff body for vortex induced vibration energy harvesting. Ocean Engineering, 213, 107624(2020) [28] WANG, J., GU, S., ZHANG, C., HU, G., CHEN, G., YANG, K., LI, H., LAI, Y., LITAK, G., and YURCHENKO, D. Hybrid wind energy scavenging by coupling vortex-induced vibrations and galloping. Energy Conversion and Management, 213, 112835(2020) [29] YANG, K., SU, K., WANG, J., WANG, J., YIN, K., and LITAK, G. Piezoelectric wind energy harvesting subjected to the conjunction of vortex-induced vibration and galloping:comprehensive parametric study and optimization. Smart Materials and Structures, 29(7), 075035(2020) [30] WANG, J., ZHANG, C., GU, S., YANG, K., LI, H., LAI, Y., and YURCHENKO, D. Enhancement of low-speed piezoelectric wind energy harvesting by bluff body shapes:spindle-like and butterfly-like cross-sections. Aerospace Science and Technology, 103, 105898(2020) [31] BINYET, E. M., CHANG, J. Y., and HUANG, C. Y. Flexible plate in the wake of a square cylinder for piezoelectric energy harvesting:parametric study using fluid-structure interaction modeling. Energies, 13(10), 2645(2020) [32] TAMIMI, V., ESFEHANI, M. J., ZEINODDINI, M., NAEENI, S. T. O., WU, J., and SHAHVAGHAR-ASL, S. Marine hydrokinetic energy harvesting performance of diamond and square oscillators in tandem arrangements. Energy, 202, 117749(2020) [33] JIN, Z., LI, G., WANG, J., and ZHANG, Z. Design, modeling, and experiments of the vortexinduced vibration piezoelectric energy harvester with bionic attachments. Complexity, 2019, 1-13(2019) [34] WANG, J., SUN, S., TANG, L., HU, G., and LIANG, J. On the use of metasurface for vortexinduced vibration suppression or energy harvesting. Energy Conversion and Management, 235, 113991(2021) [35] ZHAO, G., XU, J., DUAN, K., ZHANG, M., ZHU, H., and WANG, J. Numerical analysis of hydroenergy harvesting from vortex-induced vibrations of a cylinder with groove structures. Ocean Engineering, 218, 108219(2020) [36] WANG, J., GU, S., ABDELKEFI, A., and BOSE, C. Enhancing piezoelectric energy harvesting from the flow-induced vibration of a circular cylinder using dual splitters. Smart Materials and Structures, 30(5), 05LT01(2021) [37] HU, G., LIU, F., LI, L., LI, C., XIAO, Y., and KWOK, K. C. S. Wind energy harvesting performance of tandem circular cylinders with triangular protrusions. Journal of Fluids and Structures, 91, 102780(2019) [38] HU, G., TSE, K. T., WEI, M., NASEER, R., ABDELKEFI, A., and KWOK, K. C. S. Experimental investigation on the efficiency of circular cylinder-based wind energy harvester with different rod-shaped attachments. Applied Energy, 226, 682-689(2018) [39] AZADEH-RANJBAR, V., HAN, Y., ELVIN, N., and ANDREOPOULOS, Y. Non-linear piezoelectric fluidic energy harvesters:the mutual interaction of two oscillating cylinders. Journal of Intelligent Material Systems and Structures, 31(20), 2378-2389(2020) [40] SHOSHANI, O. Theoretical aspects of transverse galloping. Nonlinear Dynamics, 94(4), 2685-2696(2018) [41] JAVED, U. and ABDELKEFI, A. Impacts of the aerodynamic force representation on the stability and performance of a galloping-based energy harvester. Journal of Sound and Vibration, 400, 213-226(2017) [42] YU, H. and ZHANG, M. Effects of side ratio on energy harvesting from transverse galloping of a rectangular cylinder. Energy, 226, 120420(2021) [43] SUN, W., GUO, F., and SEOK, J. Development of a novel vibro-wind galloping energy harvester with high power density incorporated with a nested bluff-body structure. Energy Conversion and Management, 197, 111880(2019) [44] LIAO, P., FU, J., MA, W., CAI, Y., and HE, Y. Study on the efficiency and dynamic characteristics of an energy harvester based on flexible structure galloping. Energies, 14(20), 6548(2021) [45] WANG, J., TANG, L., ZHAO, L., and ZHANG, Z. Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies. Energy, 172, 1066-1078(2019) [46] TAN, T., ZUO, L., and YAN, Z. Environment coupled piezoelectric galloping wind energy harvesting. Sensors and Actuators A:Physical, 323, 112641(2021) [47] TAN, T., HU, X., YAN, Z., and ZHANG, W. Enhanced low-velocity wind energy harvesting from transverse galloping with super capacitor. Energy, 187, 115915(2019) [48] TAN, T., HU, X., YAN, Z., ZOU, Y., and ZHANG, W. Piezoelectromagnetic synergy design and performance analysis for wind galloping energy harvester. Sensors and Actuators A:Physical, 302, 111813(2020) [49] ZHAO, L. Synchronization extension using a bistable galloping oscillator for enhanced power generation from concurrent wind and base vibration. Applied Physics Letters, 116(5), 053904(2020) [50] PETRINI, F. and GKOUMAS, K. Piezoelectric energy harvesting from vortex shedding and galloping induced vibrations inside HVAC ducts. Energy and Buildings, 158, 371-383(2018) [51] SOBHANIRAD, S. and AFSHARFARD, A. Improving application of galloping-based energy harvesters in realistic condition. Archive of Applied Mechanics, 89(2), 313-328(2018) [52] ZHANG, J., ZHANG, X., SHU, C., FANG, Z., and NING, Y. Modeling and nonlinear analysis of stepped beam energy harvesting from galloping vibrations. Journal of Sound and Vibration, 479, 115354(2020) [53] WANG, J., GENG, L., YANG, K., ZHAO, L., WANG, F., and YURCHENKO, D. Dynamics of the double-beam piezo-magneto-elastic nonlinear wind energy harvester exhibiting gallopingbased vibration. Nonlinear Dynamics, 100(3), 1963-1983(2020) [54] BASHIR, M., RAJENDRAN, P., and KHAN, S. A. Energy harvesting from aerodynamic instabilities:current prospect and future trends. IOP Conference Series:Materials Science and Engineering, 290, 012054(2018) [55] HAFEZI, M. and MIRDAMADI, H. R. A novel design for an adaptive aeroelastic energy harvesting system:flutter and power analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(1), 9(2018) [56] BAO, C., DAI, Y., WANG, P., and TANG, G. A piezoelectric energy harvesting scheme based on stall flutter of airfoil section. European Journal of Mechanics-B/Fluids, 75, 119-132(2019) [57] LIU, J., ZUO, H., XIA, W., LUO, Y., YAO, D., CHEN, Y., WANG, K., and LI, Q. Wind energy harvesting using piezoelectric macro fiber composites based on flutter mode. Microelectronic Engineering, 231, 111333(2020) [58] ABDEHVAND, M. Z., SEYED-ROKNIZADEH, S. A., and SEDIGHI, H. M. Modeling and analysis of a coupled novel nonlinear magneto-electro-aeroelastic lumped model for a flutter based energy harvesting system. Physica Scripta, 96(2), 025213(2020) [59] ABDEHVAND, M. Z., SEYED-ROKNIZADEH, S. A., and MOHAMMAD-SEDIGHI, H. Modeling and analysis of novel coupled magneto-electro-aeroelastic continuous system for flutter-based energy harvesting system. Energy, 230, 120742(2021) [60] ELAHI, H., EUGENI, M., FUNE, F., LAMPANI, L., MASTRODDI, F., PAOLO-ROMANO, G., and GAUDENZI, P. Performance evaluation of a piezoelectric energy harvester based on flag-flutter. Micromachines, 11(10), 933(2020) [61] WANG, Y., YANG, E., CHEN, T., WANG, J., HU, Z., MI, J., PAN, X., and XU, M. A novel humidity resisting and wind direction adapting flag-type triboelectric nanogenerator for wind energy harvesting and speed sensing. Nano Energy, 78, 105279(2020) [62] SONG, R. J., HOU, C. W., SHI, Z. C., YANG, X. H., JIANG, S. B., and JIA, J. D. Numerical simulation for energy harvesting of piezoelectric flag in uniform flow. International Journal of Simulation Modelling, 18(2), 314-324(2019) [63] TANG, D. M., LEVIN, D., and DOWELL, E. H. Experimental and theoretical correlations for energy harvesting from a large flapping flag response. Journal of Fluids and Structures, 86, 290-315(2019) [45] WANG, J., TANG, L., ZHAO, L., and ZHANG, Z. Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies. Energy, 172, 1066-1078(2019) [46] TAN, T., ZUO, L., and YAN, Z. Environment coupled piezoelectric galloping wind energy harvesting. Sensors and Actuators A:Physical, 323, 112641(2021) [47] TAN, T., HU, X., YAN, Z., and ZHANG, W. Enhanced low-velocity wind energy harvesting from transverse galloping with super capacitor. Energy, 187, 115915(2019) [48] TAN, T., HU, X., YAN, Z., ZOU, Y., and ZHANG, W. Piezoelectromagnetic synergy design and performance analysis for wind galloping energy harvester. Sensors and Actuators A:Physical, 302, 111813(2020) [49] ZHAO, L. Synchronization extension using a bistable galloping oscillator for enhanced power generation from concurrent wind and base vibration. Applied Physics Letters, 116(5), 053904(2020) [50] PETRINI, F. and GKOUMAS, K. Piezoelectric energy harvesting from vortex shedding and galloping induced vibrations inside HVAC ducts. Energy and Buildings, 158, 371-383(2018) [51] SOBHANIRAD, S. and AFSHARFARD, A. Improving application of galloping-based energy harvesters in realistic condition. Archive of Applied Mechanics, 89(2), 313-328(2018) [52] ZHANG, J., ZHANG, X., SHU, C., FANG, Z., and NING, Y. Modeling and nonlinear analysis of stepped beam energy harvesting from galloping vibrations. Journal of Sound and Vibration, 479, 115354(2020) [53] WANG, J., GENG, L., YANG, K., ZHAO, L., WANG, F., and YURCHENKO, D. Dynamics of the double-beam piezo-magneto-elastic nonlinear wind energy harvester exhibiting gallopingbased vibration. Nonlinear Dynamics, 100(3), 1963-1983(2020) [54] BASHIR, M., RAJENDRAN, P., and KHAN, S. A. Energy harvesting from aerodynamic instabilities:current prospect and future trends. IOP Conference Series:Materials Science and Engineering, 290, 012054(2018) [55] HAFEZI, M. and MIRDAMADI, H. R. A novel design for an adaptive aeroelastic energy harvesting system:flutter and power analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(1), 9(2018) [56] BAO, C., DAI, Y., WANG, P., and TANG, G. A piezoelectric energy harvesting scheme based on stall flutter of airfoil section. European Journal of Mechanics-B/Fluids, 75, 119-132(2019) [57] LIU, J., ZUO, H., XIA, W., LUO, Y., YAO, D., CHEN, Y., WANG, K., and LI, Q. Wind energy harvesting using piezoelectric macro fiber composites based on flutter mode. Microelectronic Engineering, 231, 111333(2020) [58] ABDEHVAND, M. Z., SEYED-ROKNIZADEH, S. A., and SEDIGHI, H. M. Modeling and analysis of a coupled novel nonlinear magneto-electro-aeroelastic lumped model for a flutter based energy harvesting system. Physica Scripta, 96(2), 025213(2020) [59] ABDEHVAND, M. Z., SEYED-ROKNIZADEH, S. A., and MOHAMMAD-SEDIGHI, H. Modeling and analysis of novel coupled magneto-electro-aeroelastic continuous system for flutter-based energy harvesting system. Energy, 230, 120742(2021) [60] ELAHI, H., EUGENI, M., FUNE, F., LAMPANI, L., MASTRODDI, F., PAOLO-ROMANO, G., and GAUDENZI, P. Performance evaluation of a piezoelectric energy harvester based on flag-flutter. Micromachines, 11(10), 933(2020) [61] WANG, Y., YANG, E., CHEN, T., WANG, J., HU, Z., MI, J., PAN, X., and XU, M. A novel humidity resisting and wind direction adapting flag-type triboelectric nanogenerator for wind energy harvesting and speed sensing. Nano Energy, 78, 105279(2020) [62] SONG, R. J., HOU, C. W., SHI, Z. C., YANG, X. H., JIANG, S. B., and JIA, J. D. Numerical simulation for energy harvesting of piezoelectric flag in uniform flow. International Journal of Simulation Modelling, 18(2), 314-324(2019) [63] TANG, D. M., LEVIN, D., and DOWELL, E. H. Experimental and theoretical correlations for energy harvesting from a large flapping flag response. Journal of Fluids and Structures, 86, 290-315(2019)976 Dongxing CAO, Junru WANG, Xiangying GUO, S. K. LAI, and Yongjun SHEN [64] SUN, W., DING, Z., QIN, Z., CHU, F., and HAN, Q. Wind energy harvesting based on fluttering double-flag type triboelectric nanogenerators. Nano Energy, 70, 104526(2020) [65] SILVA-LEON, J., CIONCOLINI, A., NABAWY, M. R. A., REVELL, A., and KENNAUGH, A. Simultaneous wind and solar energy harvesting with inverted flags. Applied Energy, 239, 846-858(2019) [66] YANG, K., NABAWY, M. R. A., CIONCOLINI, A., REVELL, A., and ALGHRAIRY, S. Planform geometry effects of piezoelectric wind energy harvesting composite inverted flags. Smart Materials and Structures, 30(11), 115014(2021) [67] MAZHARMANESH, S., YOUNG, J., TIAN, F. B., and LAI, J. C. S. Energy harvesting of two inverted piezoelectric flags in tandem, side-by-side and staggered arrangements. International Journal of Heat and Fluid Flow, 83, 108589(2020) [68] YUAN, W., LAIMA, S., CHEN, W., LI, H., and HU, H. Investigation on the vortex-and-wakeinduced vibration of a separated-box bridge girder. Journal of Fluids and Structures, 70, 145-161(2017) [69] ASSI, G. R. S., BEARMAN, P. W., and MENEGHINI, J. R. On the wake-induced vibration of tandem circular cylinders:the vortex interaction excitation mechanism. Journal of Fluid Mechanics, 661, 365-401(2010) [70] ASSI, G. R. S., BEARMAN, P. W., CARMO, B. S., MENEGHINI, J. R., SHERWIN, S. J., and WILLDEN, R. H. J. The role of wake stiffness on the wake-induced vibration of the downstream cylinder of a tandem pair. Journal of Fluid Mechanics, 718, 210-245(2013) [71] ABDELKEFI, A. Aeroelastic energy harvesting:a review. International Journal of Engineering Science, 100, 112-135(2016) [72] USMAN, M., HANIF, A., KIM, I. H., and JUNG, H. J. Experimental validation of a novel piezoelectric energy harvesting system employing wake galloping phenomenon for a broad wind spectrum. Energy, 153, 882-889(2018) [73] REZAEI, M. and TALEBITOOTI, R. Wideband PZT energy harvesting from the wake of a bluff body in varying flow speeds. International Journal of Mechanical Sciences, 163, 105135(2019) [74] YAN, Z., WANG, L., HAJJ, M. R., YAN, Z., SUN, Y., and TAN, T. Energy harvesting from iced-conductor inspired wake galloping. Extreme Mechanics Letters, 35, 100633(2020) [75] LATIF, U., UDDIN, E., YOUNIS, M. Y., ASLAM, J., ALI, Z., SAJID, M., and ABDELKEFI, A. Experimental electro-hydrodynamic investigation of flag-based energy harvesting in the wake of inverted C-shape cylinder. Energy, 215, 119195(2021) [76] MUJTABA, A., LATIF, U., UDDIN, E., YOUNIS, M. Y., SAJID, M., ALI, Z., and ABDELKEFI, A. Hydrodynamic energy harvesting analysis of two piezoelectric tandem flags under influence of upstream body's wakes. Applied Energy, 282, 116173(2021) [77] TAMIMI, V., WU, J., NAEENI, S. T. O., and SHAHVAGHAR-ASL, S. Effects of dissimilar wakes on energy harvesting of flow induced vibration (FIV) based converters with circular oscillator. Applied Energy, 281, 116092(2021) [78] CAO, D., DING, X., GUO, X., and YAO, M. Improved flow-induced vibration energy harvester by using magnetic force:an experimental study. International Journal of Precision Engineering and Manufacturing-Green Technology, 8(3), 879-887(2021) [79] CAO, D., DING, X., GUO, X., and YAO, M. Design, simulation and experiment for a vortexinduced vibration energy harvester for low-velocity water flow. International Journal of Precision Engineering and Manufacturing-Green Technology, 8(4), 1239-1252(2021) [80] WANG, J., SU, Z., LI, H., DING, L., ZHU, H., and GAIDAI, O. Imposing a wake effect to improve clean marine energy harvesting by flow-induced vibrations. Ocean Engineering, 208, 107455(2020) [81] LIU, F. R., ZHANG, W. M., ZHAO, L. C., ZOU, H. X., TAN, T., PENG, Z. K., and MENG, G. Performance enhancement of wind energy harvester utilizing wake flow induced by double upstream flat-plates. Applied Energy, 257, 114034(2020) [82] SUN, W., ZHAO, D., TAN, T., YAN, Z., GUO, P., and LUO, X. Low velocity water flow energy harvesting using vortex induced vibration and galloping. Applied Energy, 251, 113392(2019) [83] SHAN, X., TIAN, H., and XIE, T. Enhanced performance of piezoelectric energy harvester through three serial vibrators. Journal of Intelligent Material Systems and Structures, 32(10), 1140-1151(2021) [84] WANG, H. R., XIE, J. M., XIE, X., HU, Y. T., and WANG, J. Nonlinear characteristics of circular-cylinder piezoelectric power harvester near resonance based on flow-induced flexural vibration mode. Applied Mathematics and Mechanics (English Edition), 35(2), 229-236(2014) https://doi.org/10.1007/s10483-014-1786-6 [85] HUANG, D., ZHOU, S., and LITAK, G. Theoretical analysis of multi-stable energy harvesters with high-order stiffness terms. Communications in Nonlinear Science and Numerical Simulation, 69, 270-286(2019) [86] ZHOU, Z., QIN, W., DU, W., ZHU, P., and LIU, Q. Improving energy harvesting from random excitation by nonlinear flexible bi-stable energy harvester with a variable potential energy function. Mechanical Systems and Signal Processing, 115, 162-172(2019) [87] WANG, C., LAI, S. K., WANG, J. M., FENG, J. J., and NI, Y. Q. An ultra-low-frequency, broadband and multi-stable tri-hybrid energy harvester for enabling the next-generation sustainable power. Applied Energy, 291, 116825(2021) [88] FANG, S., ZHOU, S., YURCHENKO, D., YANG, T., and LIAO, W. H. Multistability phenomenon in signal processing, energy harvesting, composite structures, and metamaterials:a review. Mechanical Systems and Signal Processing, 166, 108419(2022) [89] NASEER, R., DAI, H. L., ABDELKEFI, A., and WANG, L. Piezomagnetoelastic energy harvesting from vortex-induced vibrations using monostable characteristics. Applied Energy, 203, 142-153(2017) [90] NASEER, R., DAI, H. L., ABDELKEFI, A., and WANG, L. Comparative study of piezoelectric vortex-induced vibration-based energy harvesters with multi-stability characteristics. Energies, 13(1), 71(2019) [91] JAVED, U. and ABDELKEFI, A. Characteristics and comparative analysis of piezoelectricelectromagnetic energy harvesters from vortex-induced oscillations. Nonlinear Dynamics, 95(4), 3309-3333(2019) [92] HOU, C., SHAN, X., ZHANG, L., SONG, R., and YANG, Z. Design and modeling of a magneticcoupling monostable piezoelectric energy harvester under vortex-induced vibration. IEEE Access, 8, 108913-108927(2020) [93] YANG, K., QIU, T., WANG, J., and TANG, L. Magnet-induced monostable nonlinearity for improving the VIV-galloping-coupled wind energy harvesting using combined cross-sectioned bluff body. Smart Materials and Structures, 29(7), 07LT01(2020) [94] ZHOU, Z., QIN, W., ZHU, P., and SHANG, S. Scavenging wind energy by a Y-shaped bi-stable energy harvester with curved wings. Energy, 153, 400-412(2018) [95] ZOU, H. X., LI, M., ZHAO, L. C., GAO, Q. H., WEI, K. X., ZUO, L., QIAN, F., and ZHANG, W. M. A magnetically coupled bistable piezoelectric harvester for underwater energy harvesting. Energy, 217, 119429(2021) [96] WANG, J., GENG, L., ZHOU, S., ZHANG, Z., LAI, Z., and YURCHENKO, D. Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester. Acta Mechanica Sinica, 36(3), 592-605(2020) [97] QIN, W., DENG, W., PAN, J., ZHOU, Z., DU, W., and ZHU, P. Harvesting wind energy with bi-stable snap-through excited by vortex-induced vibration and galloping. Energy, 189, 116237(2019) [98] WANG, Y., ZHOU, Z., QIN, W., and ZHU, P. Harvesting wind energy with a bi-stable configuration integrating vortex-induced vibration and galloping. Journal of Physics D:Applied Physics, 54(28), 285501(2021) [99] ZHOU, Z., QIN, W., ZHU, P., and DU, W. Harvesting more energy from variable-speed wind by a multi-stable configuration with vortex-induced vibration and galloping. Energy, 237, 121551(2021) [100] DUNNMON, J. A., STANTON, S. C., MANN, B. P., and DOWELL, E. H. Power extraction from aeroelastic limit cycle oscillations. Journal of Fluids and Structures, 27(8), 1182-1198(2011) |