[1] SHECHTMAN, D., BLECH, I., GRATIAS, D., and CAHN, J. W. Metallic phase with long-range orientational order and no translational symmetry. Physical Review Letters, 53(20), 1951–1953(1984) [2] JARIC, M. V. and NELSON, D. R. Introduction to quasicrystals. Physics Today, 43(3), 77–79(1990) [3] FAN, T. Y. Mathematical theory and methods of mechanics of quasicrystalline materials. Engineering, 5(4), 407–448(2013) [4] DE BOISSIEU, M. Atomic structure of quasicrystals. Structural Chemistry, 23(4), 965–976(2012) [5] DUBOIS, J. M. Properties and applications of quasicrystals and complex metallic alloys. Chemical Society Reviews, 41(20), 6760–6777(2012) [6] LI, X. Y., WANG, T., ZHENG, R. F., and KANG, G. Z. Fundamental thermo-electro-elastic solutions for 1D hexagonal QC. Zeitschrift für Angewandte Mathematik und Mechanik, 95(5), 457–468(2015) [7] HUANG, Y. Z., LI, Y., ZHANG, L. L., ZHANG, H., and GAO, Y. Dynamic analysis of a multilayered piezoelectric two-dimensional quasicrystal cylindrical shell filled with compressible fluid using the state-space approach. Acta Mechanica, 231(6), 2351–2368(2020) [8] FAN, T. Y. Mathematical Theory of Elasticity of Quasicrystals and Its Applications, Springer, Heidelberg (2011) [9] LIU, G. T. Complex Method of Quasicrystal Elasticity and Explicit Solution of Nonlinear Equation (in Chinese), Inner Mongolia Peoples Publishing House, Hohhot (2005) [10] GAO, Y., RICOEUR, A., and ZHANG, L. L. Plane problems of cubic quasicrystal media with an elliptic hole or a crack. Physics Letters A, 375(28-29), 2775–2781(2011) [11] GAO, Y. and RICOEUR, A. Green’s functions for infinite bi-material planes of cubic quasicrystals with imperfect interface. Physics Letters A, 374(42), 4354–4358(2010) [12] LI, L. H. and LIU, G. T. Stroh formalism for icosahedral quasicrystal and its application. Physics Letters A, 376(8-9), 987–990(2012) [13] LI, Y., YANG, L. Z., ZHANG, L. L., and GAO, Y. Static response of functionally graded multilayered one-dimensional quasicrystal cylindrical shells. Mathematics and Mechanics of Solids, 24(6), 1908–1921(2019) [14] LI, Y., YANG, L. Z., ZHANG, L. L., and GAO, Y. Exact thermoelectroelastic solution of layered one-dimensional quasicrystal cylindrical shells. Journal of Thermal Stresses, 41(10-12), 1450–1467(2018) [15] PAN, E. and CHEN, W. Static Green’s Functions in Anisotropic Media, Cambridge University Press, Cambridge (2015) [16] TING, T. C. T. and HORGAN, C. O. Anisotropic elasticity: theory and applications. Journal of Applied Mechanic, 63(4), 1056(1996) [17] HWU, C. Anisotropic Elastic Plates, Springer Science & Business Media, New York (2010) [18] PAN, E. Three-dimensional Green’s functions in anisotropic magneto-electro-elastic bimaterials. Zeitschrift für Angewandte Mathematik und Physik, 53(5), 815–838(2002) [19] QIN, Q. 2D Green’s functions of defective magnetoelectroelastic solids under thermal loading. Engineering Analysis with Boundary Elements, 29(6), 577–585(2005) [20] PAN, E. and YUAN, F. G. Three-dimensional Green’s functions in anisotropic bimaterials. International Journal of Solids and Structures, 37(38), 5329–5351(2000) [21] GAO, C. F. and WANG, M. Z. Green’s functions of an interfacial crack between two dissimilar piezoelectric media. International Journal of Solids and Structures, 38(30-31), 5323–5334(2001) [22] GAO, Y. and RICOEUR, A. Three-dimensional Green’s functions for two-dimensional quasicrystal bimaterials. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 467(2133), 2622–2642(2011) [23] CHEN, W. Q., MA, Y. L., and DING, H. J. On three-dimensional elastic problems of onedimensional hexagonal quasicrystal bodies. Mechanics Research Communications, 31(6), 633–641(2004) [24] WANG, W. S., LI, C. Q., and ZHOU, Y. T. Thermo-electric response in 2D hexagonal QC exhibiting piezoelectric effect. Zeitschrift für Angewandte Mathematik und Mechanik, 101(2), e201900212(2021) [25] XU, W. S., WU, D., and GAO, Y. Fundamental elastic field in an infinite plane of two-dimensional piezoelectric quasicrystal subjected to multi-physics loads. Applied Mathematical Modelling, 52, 186–196(2017) [26] MU, X., XU, W. S., ZHU, Z. W., ZHANG, L. L., and GAO, Y. Multi-field coupling solutions of functionally graded two-dimensional piezoelectric quasicrystal wedges and spaces. Applied Mathematical Modelling, 109, 251–264(2022) [27] HU, C. Z., WANG, R. H., DING, D. H., and YANG, W. G. Piezoelectric effects in quasicrystals. Physical Review B, 56(5), 2463–2468(1997) [28] LI, L. H. and LIU, G. T. Study on a straight dislocation in an icosahedral quasicrystal with piezoelectric effects. Applied Mathematics and Mechanics (English Edition), 39(9), 1259–1266(2018) https://doi.org/10.1007/s10483-018-2363-9 [29] WU, D., ZHANG, L., XU, W., YANG, L., and GAO, Y. Electroelastic Green’s function of onedimensional piezoelectric quasicrystals subjected to multi-physics loads. Journal of Intelligent Material Systems and Structures, 28(12), 1651–1661(2016) [30] ZHANG, L., WU, D., XU, W., YANG, L., RICOEUR, A., and WANG, Z. Green’s functions of one-dimensional quasicrystal bi-material with piezoelectric effect. Physics Letters A, 380(39), 3222–3228(2016) [31] GAO, Y. and ZHAO, B. S. General solutions of three-dimensional problems for two-dimensional quasicrystals. Applied Mathematical Modelling, 33(8), 3382–3391(2009) [32] YANG, L. Z., LI, Y., GAO, Y., PAN, E., and WAKSMANSKI, N. Three-dimensional exact electricelastic analysis of a multilayered two-dimensional decagonal quasicrystal plate subjected to patch loading. Composite Structures, 171, 198–216(2017) [33] LI, Y., YANG, L. Z., GAO, Y., and PAN, E. N. Cylindrical bending analysis of a layered two-dimensional piezoelectric quasicrystal nanoplate. Journal of Intelligent Material Systems and Structures, 29(12), 2660–2676(2018) [34] LI, C. Q. and ZHOU, Y. T. Fundamental solutions and frictionless contact problem in a semiinfinite space of 2D hexagonal piezoelectric QCs. Zeitschrift für Angewandte Mathematik und Mechanik, 99(5), e201800132(2019) [35] MU, X., XU, W., ZHU, Z., ZHUANG, L., and GAO, Y. Multi-field coupling solutions of functionally graded two-dimensional piezoelectric quasicrystal wedges and spaces. Applied Mathematical Modelling, 109, 251–264(2022) |