[1] BARTH, C., MONDONICO, G., and SENATORE, C. Electro-mechanical properties of REBCO coated conductors from various industrial manufacturers at 77 K, self-field and 4.2 K, 19 T. Superconductor Science and Technology, 28, 045011(2015) [2] SENATORE, C., ALESSANDRINI, M., LUCARELLI, A., TEDIOSI, R., UGLIETTI, D., and IWASA, Y. Progresses and challenges in the development of high-field solenoidal magnets based on RE123 coated conductors. Superconductor Science and Technology, 27, 103001(2014) [3] WEIJERS, H. W., MARKIEWICZ, W. D., VORAN, A. J., GUNDLACH, S. R., SHEPPARD, W. R., JARVIS, B., JOHNSON, Z. L., NOYES, P. D., LU, J., KANDEL, H., BAI, H., GAVRILIN, A. V., VIOUCHKOV, Y. L., LARBALESTIER, D. C., and ABRAIMOV, D. V. Progress in the development of a superconducting 32 T magnet with REBCO high field coils. IEEE Transactions on Applied Superconductivity, 24, 4301805(2014) [4] TOSAKA, T., MIYAZAKI, H., IWAI, S., OTANI, Y., TAKAHASHI, M., TASAKI, K., NOMURA, S., KURUSU, T., UEDA, H., NOGUCHI, S., ISHIYAMA, A., URAYAMA, S., and FUKUYAMA, H. R&D project on HTS magnets for ultra-high field MRI systems. IEEE Transactions on Applied Superconductivity, 26, 4402505(2016) [5] PARK, D., BASCUNAN, J., LI, Y., LEE, W., CHOI, Y., and IWASA, Y. Design overview of the MIT 1.3-GHz LTS/HTS NMR magnet with a new REBCO insert. IEEE Transactions on Applied Superconductivity, 31, 4300206(2021) [6] GAO, P. F., GUAN, M. Z., WANG, X. Z., and ZHOU, Y. H. Electromagnetic-thermal-structure multi-layer nonlinear elastoplastic modelling study on epoxy-impregnated REBCO pancake coils in high-field magnets. Superconductivity, 1, 100002(2022) [7] SCHWARTZ, J. Quench in high temperature superconductor magnets. CERN Report, Geneva (2013) https://doi.org/10.5170/CERN-2013-006 [8] HAHN, S., PARK, D. K., BASCUNAN, J., and IWASA, Y. HTS pancake coils without turn-toturn insulation. IEEE Transactions on Applied Superconductivity, 21, 1592–1595(2011) [9] HAHN, S., RADCLIFF, K., KIM, K., KIM, S., HU, X. B., KIM, K., ABRAIMOV, D. V., and JAROSZYNSKI, J. ‘Defect-irrelevant’ behavior of a no-insulation pancake coil wound with REBCO tapes containing multiple defects. Superconductor Science and Technology, 29, 105017(2016) [10] WANG, Y., CHAN, W. K., and SCHWARTZ, J. Self-protection mechanisms in no-insulation (RE) Ba2Cu3Ox high temperature superconductor pancake coils. Superconductor Science and Technology, 29, 045007(2016) [11] BAI, H. Y., BIRD, M. D., COOLEY, L. D., DIXON, I. R., KIM, K. L., LARBALESTIER, D. C., MARSHALL, W. S., TROCIEWITZ, U. P., WEIJERS, H. W., ABRAIMOV, D. V., and BOEBINGER, G. S. The 40 T superconducting magnet project at the national high magnetic field laboratory. IEEE Transactions on Applied Superconductivity, 30, 4300405(2020) [12] HAHN, S., KIM, K., KIM, K., HU, X., PAINTER, T., DIXON, I., KIM, S., BHATTARAI, K. R., NOGUCHI, S., JAROSZYNSKI, J., and LARBALESTIER, D. C. 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet. nature, 570, 496–499(2019) [13] LIU, J. H., WANG, Q. L., QIN, L., ZHOU, B. Z., WANG, K. S., WANG, Y. H., WANG, L., ZHANG, Z. L., DAI, Y. M., LIU, H. J., HU, X. N., WANG, H., CUI, C., WANG, D. G., WANG, H., SUN, J. S., SUN, W. S., and XIONG, L. World record 32.35 tesla direct-current magnetic field generated with an all-superconducting magnet. Superconductor Science and Technology, 33, 03LT01(2020) [14] MICHAEL, P. C., PARK, D., CHOI, Y. H., LEE, J., LI, Y., BASCUNAN, J., NOGUCHI, S., HAHN, S., and IWASA, Y. Assembly and test of a 3-nested-coil 800-MHz REBCO insert (H800) for the MIT 1.3 GHz LTS/HTS NMR magnet. IEEE Transactions on Applied Superconductivity, 29, 4300706(2019) [15] BHATTARAI, K. R., KIM, K., KIM, K., RADCLIFF, K., HU, X. B., IM, C., PAINTER, T., DIXON, I., LARBALESTIER, D., LEE, S., and HAHN, S. Understanding quench in no-insulation (NI) REBCO magnets through experiments and simulations. Superconductor Science and Technology, 33, 035002(2020) [16] NOGUCHI, S. and HAHN, S. Torque simulation on NI REBCO pancake coils during quench. Journal of Physics: Conference Series, 1293, 012061(2019) [17] TAKAHASHI, S., SUETOMI, Y., TAKAO, T., YANAGISAWA, Y., MAEDA, H., TAKEDA, Y., and SHIMOYAMA, J. Hoop stress modification, stress hysteresis and degradation of a REBCO coil due to the screening current under external magnetic field cycling. IEEE Transactions on Applied Superconductivity, 30, 4602607(2020) [18] HU, X. B., SMALL, M., KIM, K., KIM, K., BHATTARAI, K., POLYANSKII, A., RADCLIFF, K., JAROSZYNSKI, J., BONG, U. J., PARK, J. H., HAHN, S., and LARBALESTIER, D. Analyses of the plastic deformation of coated conductors deconstructed from ultra-high field test coils. Superconductor Science and Technology, 33, 095012(2020) [19] LECREVISSE, T., BADEL, A., BENKEL, T., CHAUD, X., FAZILLEAU, P., and TIXADOR, P. Metal-as-insulation variant of no-insulation HTS winding technique: pancake tests under high background magnetic field and high current at 4.2 K. Superconductor Science and Technology, 31, 055008(2018) [20] YANAGISAWA, K., IGUCHI, S., XU, Y., LI, J., SAITO, A. T., NAKAGOME, H., TAKAO, T., MATSUMOTO, S., HAMADA, M., and YANAGISAWA, Y. A long charging delay for a noinsulation REBCO layer-wound coil and its influence on operation with outer LTS coils. IEEE Transactions on Applied Superconductivity, 26, 4602304(2016) [21] PARK, D., BASCUNAN, J., MICHAEL, P. C., LEE, J., CHOI, Y. H., LI, Y., HAHN, S., and IWASA, Y. MIT 1.3-GHz LTS/HTS NMR magnet: post quench analysis and new 800-MHz insert design. IEEE Transactions on Applied Superconductivity, 29, 4300804(2019) [22] LIU, D. H., ZHANG, W. W., YONG, H. D., and ZHOU, Y. H. Thermal stability and mechanical behavior in no-insulation high-temperature superconducting pancake coils. Superconductor Science and Technology, 31, 085010(2018) [23] LIU, D. H., LI, D. K., ZHANG, W. W., YONG, H. D., and ZHOU, Y. H. Electromagneticthermal-mechanical behaviors of a no-insulation double-pancake coil induced by a quench in the self field and the high field. Superconductor Science and Technology, 34, 025014(2021) [24] WANG, X., HAHN, S., KIM, Y., BASCUNAN, J., VOCCIO, J., LEE, H., and IWASA, Y. Turnto-turn contact characteristics for an equivalent circuit model of no-insulation ReBCO pancake coil. Superconductor Science and Technology, 26, 035012(2013) [25] WANG, Y., SONG, H., XU, D., LI, Z. Y., JIN, Z., and HONG, Z. An equivalent circuit grid model for no-insulation HTS pancake coils. Superconductor Science and Technology, 28, 045017(2015) [26] CHAN, W. K. and SCHWARTZ, J. Improved stability, magnetic field preservation and recovery speed in (RE)Ba2Cu3Ox-based no-insulation magnets via a graded-resistance approach. Superconductor Science and Technology, 30, 074007(2017) [27] LIU, D. H., ZHANG, W. W., YONG, H. D., and ZHOU, Y. H. Numerical analysis of thermal stability and mechanical response in a no-insulation high-temperature superconducting layerwound coil. Superconductor Science and Technology, 32, 044001(2019) [28] HAHN, S., KIM, Y., LING, J., VOCCIO, J., PARK, D. K., BASCUNAN, J., SHIN, H. J., LEE, H., and IWASA, Y. No-insulation coil under time-varying condition: magnetic coupling with external coil. IEEE Transactions on Applied Superconductivity, 23, 4601705(2013) [29] SONG, J. B., HAHN, S., KIM, Y., VOCCIO, J., LING, J. Y., BASCUNAN, J., LEE, H., and IWASA, Y. HTS wind power generator: electromagnetic force between no-insulation and insulation coils under time-varying conditions. IEEE Transactions on Applied Superconductivity, 24, 5201005(2014) [30] KIM, K. L., CHOI, Y. H., YANG, D. G., SONG, J. B., and LEE, H. G. Transient characteristics of a GdBCO racetrack pancake coil without turn-to-turn insulation. Superconductor Science and Technology, 27, 015001(2014) [31] SONG, J. B., HAHN, S., KIM, Y., MIYAGI, D., VOCCIO, J., BASCUNAN, J., LEE, H., and IWASA, Y. Dynamic response of no-insulation and partial-insulation coils for HTS wind power generator. IEEE Transactions on Applied Superconductivity, 25, 5202905(2015) [32] BRESCHI, M., CAVALLUCCI, L., RIBANI, P. L., GAVRILIN, A. V., and WEIJERS, H. W. Modeling of quench in the coupled HTS insert/LTS outsert magnet system of the NHMFL. IEEE Transactions on Applied Superconductivity, 27, 4301013(2017) [33] WANG, T., NOGUCHI, S., WANG, X., ARAKAWA, I., MINAMI, K., MONMA, K., ISHIYAMA, A., HAHN, S., and IWASA, Y. Analyses of transient behaviors of no-insulation REBCO pancake coils during sudden discharging and overcurrent. IEEE Transactions on Applied Superconductivity, 25, 4603409(2015) [34] TSUCHIYA, K., KIKUCHI, A., TERASHIMA, A., SUZUKI, K., NORIMOTO, K., TAWADA, M., MASUZAWA, M., OHUCHI, N., WANG, X. D., IIJIMA, Y., TAKAO, T., FUJITA, S., DAIBO, M., and IIJIMA, Y. Critical current characterization of commercial REBCO coated conductors at 4.2 K and 77 K. IEEE Transactions on Applied Superconductivity, 27, 6600205(2017) [35] GRILLI, F., SIROIS, F., ZERMENO, V. M. R., and VOJENCIAK, M. Self-consistent modeling of the Ic of HTS devices: how accurate do models really need to be? IEEE Transactions on Applied Superconductivity, 24, 8000508(2014) [36] GAO, P. F., WEI, X. P., WU, B. M., XIN, C., LIAO, T. F., WU, W., and GUAN, M. Z. Numerical investigation on decreasing radial stress in epoxy impregnated REBCO pancake coils by overband. Cryogenics, 103, 102971(2019) [37] YANAGISAWA, Y., XU, Y., IGUCHI, S., HAMADA, M., MATSUMOTO, S., NISHIJIMA, G., NAKAGOME, H., TAKAO, T., SUEMATSU, H., OSHIMA, Y., JIN, X., TAKAHASHI, M., and MAEDA, H. Combination of high hoop stress tolerance and a small screening current-induced field for an advanced Bi-2223 conductor coil at 4.2 K in an external field. Superconductor Science and Technology, 28, 125005(2015) [38] GUAN, M. Z., HAHN, S., BASCUNAN, J., WANG, X. Z., GAO, P. F., ZHOU, Y. H., and IWASA, Y. A parametric study on overband radial build for a REBCO 800-MHz insert of a 1.3-GHz LTS/HTS NMR magnet. IEEE Transactions on Applied Superconductivity, 26, 4301205(2016) [39] CHOI, S., JO, H. C., HWANG, Y. J., HAHN, S., and KO, T. K. A study on the no insulation winding method of the HTS Coil. IEEE Transactions on Applied Superconductivity, 22, 4904004(2012) |