[1] BRÜLS, O. and GOLINVAL, J. C. On the numerical damping of time integrators for coupled mechatronic systems. Computer Methods in Applied Mechanics and Engineering, 197, 577-588(2008) [2] CHUNG, J. and HULBERT, G. M. A time integration algorithm for structural dynamics with improved numerical dissipation:the generalized-α method. Journal of Applied Mechanics, 60, 371-375(1993) [3] HILBER, H. M., HUGHES, T. J. R., and TAYLOR, R. L. Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engineering & Structural Dynamics, 5, 283-292(1977) [4] NEWMARK, N. M. A method of computation for structural dynamics. Journal of the Engineering Mechanics Division, 85, 67-94(1959) [5] HORNIK, K., STINCHCOMBE, M., and WHITE, H. Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359-366(1989) [6] KARNIADAKIS, G. E., KEVREKIDIS, I. G., LU, L., PERDIKARIS, P., WANG, S., and YANG, L. Physics-informed machine learning. Nature Reviews Physics, 3, 422-440(2021) [7] CAI, S., WANG, Z., WANG, S., PERDIKARIS, P., and KARNIADAKIS, G. E. Physics-informed neural networks for heat transfer problems. Journal of Heat Transfer, 143, 060801(2021) [8] LU, L., JIN, P., PANG, G., ZHANG, Z., and KARNIADAKIS, G. E. Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature Machine Intelligence, 3, 218-229(2021) [9] MAO, Z., JAGTAP, A. D., and KARNIADAKIS, G. E. Physics-informed neural networks for high-speed flows. Computer Methods in Applied Mechanics and Engineering, 360, 112789(2020) [10] RAISSI, M. Deep hidden physics models:deep learning of nonlinear partial differential equations. The Journal of Machine Learning Research, 19, 932-955(2018) [11] GUO, K., YANG, Z., YU, C. H., and BUEHLER, M. J. Artificial intelligence and machine learning in design of mechanical materials. Materials Horizons, 8, 1153-1172(2021) [12] CHEN, G., LI, T., CHEN, Q., REN, S., WANG, C., and LI, S. Application of deep learning neural network to identify collision load conditions based on permanent plastic deformation of shell structures. Computational Mechanics, 64, 435-449(2019) [13] LINKA, K., HILLGÄRTNER, M., ABDOLAZIZI, K. P., AYDIN, R. C., ITSKOV, M., and CYRON, C. J. Constitutive artificial neural networks:a fast and general approach to predictive data-driven constitutive modeling by deep learning. Journal of Computational Physics, 429, 110010(2021) [14] LU, L., DAO, M., KUMAR, P., RAMAMURTY, U., KARNIADAKIS, G. E., and SURESH, S. Extraction of mechanical properties of materials through deep learning from instrumented indentation. Proceedings of the National Academy of Sciences, 117, 7052-7062(2020) [15] STERN, M., ARINZE, C., PEREZ, L., PALMER, S. E., and MURUGAN, A. Supervised learning through physical changes in a mechanical system. Proceedings of the National Academy of Sciences, 117, 14843-14850(2020) [16] WU, L., NGUYEN, V. D., KILINGAR, N. G., and NOELS, L. A recurrent neural network-accelerated multi-scale model for elasto-plastic heterogeneous materials subjected to random cyclic and non-proportional loading paths. Computer Methods in Applied Mechanics and Engineering, 369, 113234(2020) [17] YOU, H., ZHANG, Q., ROSS, C. J., LEE, C. H., and YU, Y. Learning deep implicit Fourier neural operators (IFNOs) with applications to heterogeneous material modeling. Computer Methods in Applied Mechanics and Engineering, 398, 115296(2022) [18] CONDUIT, B., JONES, N., STONE, H., and CONDUIT, G. Design of a nickel-base superalloy using a neural network. Materials & Design, 131, 358-365(2017) [19] GU, G. X., CHEN, C. T., RICHMOND, D. J., and BUEHLER, M. J. Bioinspired hierarchical composite design using machine learning:simulation, additive manufacturing, and experiment. Materials Horizons, 5, 939-945(2018) [20] KIM, Y., KIM, Y., YANG, C., PARK, K., GU, G. X., and RYU, S. Deep learning framework for material design space exploration using active transfer learning and data augmentation. NPJ Computational Materials, 7, 140(2021) [21] LING, J., HUTCHINSON, M., ANTONO, E., PARADISO, S., and MEREDIG, B. High-dimensional materials and process optimization using data-driven experimental design with well-calibrated uncertainty estimates. Integrating Materials and Manufacturing Innovation, 6, 207-217(2017) [22] SPEAR, A. D., KALIDINDI, S. R., MEREDIG, B., KONTSOS, A., and LE GRAVEREND, J. B. Data-driven materials investigations:the next frontier in understanding and predicting fatigue behavior. JOM, 70, 1143-1146(2018) [23] XUE, D., YUAN, R., ZHOU, Y., XUE, D., LOOKMAN, T., ZHANG, G., DING, X., and SUN, J. Design of high temperature Ti-Pd-Cr shape memory alloys with small thermal hysteresis. Scientific Reports, 6, 28244(2016) [24] JIN, P., LU, L., TANG, Y., and KARNIADAKIS, G. E. Quantifying the generalization error in deep learning in terms of data distribution and neural network smoothness. Neural Networks, 130, 85-99(2020) [25] LU, L., MENG, X., MAO, Z., and KARNIADAKIS, G. E. DeepXDE:a deep learning library for solving differential equations. SIAM Review, 63, 208-228(2021) [26] RAISSI, M., PERDIKARIS, P., and KARNIADAKIS, G. Physics-informed neural networks:a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686-707(2019) [27] HAGHIGHAT, E., RAISSI, M., MOURE, A., GOMEZ, H., and JUANES, R. A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics. Computer Methods in Applied Mechanics and Engineering, 379, 113741(2021) [28] ALMAJID, M. M. and ABU-AL-SAUD, M. O. Prediction of porous media fluid flow using physics informed neural networks. Journal of Petroleum Science and Engineering, 208, 109205(2022) [29] CHEN, Y., LU, L., KARNIADAKIS, G. E., and NEGRO, L. D. Physics-informed neural networks for inverse problems in nano-optics and metamaterials. Optics Express, 28, 11618-11633(2020) [30] CUOMO, S., DI COLA, V. S., GIAMPAOLO, F., ROZZA, G., RAISSI, M., and PICCIALLI, F. Scientific machine learning through physics-informed neural networks:where we are and what's next. Journal of Scientific Computing, 92, 88(2022) [31] DANEKER, M., ZHANG, Z., KARNIADAKIS, G. E., and LU, L. Systems biology:identifiability analysis and parameter identification via systems-biology informed neural networks. arXiv Preprint, arXiv:2202.01723(2022) https://doi.org/10.48550/arXiv.2202.01723 [32] JIN, X., CAI, S., LI, H., and KARNIADAKIS, G. E. NSFnets (Navier-Stokes flow nets):physics-informed neural networks for the incompressible Navier-Stokes equations. Journal of Computational Physics, 426, 109951(2021) [33] YAZDANI, A., LU, L., RAISSI, M., and KARNIADAKIS, G. E. Systems biology informed deep learning for inferring parameters and hidden dynamics. PLoS Computational Biology, 16, e1007575(2020) [34] PANG, G., LU, L., and KARNIADAKIS, G. E. fPINNs:fractional physics-informed neural networks. SIAM Journal on Scientific Computing, 41, A2603-A2626(2019) [35] YUAN, L., NI, Y. Q., DENG, X. Y., and HAO, S. A-PINN:auxiliary physics informed neural networks for forward and inverse problems of nonlinear integro-differential equations. Journal of Computational Physics, 462, 111260(2022) [36] ZHANG, D., LU, L., GUO, L., and KARNIADAKIS, G. E. Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems. Journal of Computational Physics, 397, 108850(2019) [37] YU, J., LU, L., MENG, X., and KARNIADAKIS, G. E. Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems. Computer Methods in Applied Mechanics and Engineering, 393, 114823(2022) [38] SAMANIEGO, E., ANITESCU, C., GOSWAMI, S., NGUYEN-THANH, V., GUO, H., HAMDIA, K., ZHUANG, X., and RABCZUK, T. An energy approach to the solution of partial differential equations in computational mechanics via machine learning:concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering, 362, 112790(2020) [39] NGUYEN-THANH, V. M., ANITESCU, C., ALAJLAN, N., RABCZUK, T., and ZHUANG, X. Parametric deep energy approach for elasticity accounting for strain gradient effects. Computer Methods in Applied Mechanics and Engineering, 386, 114096(2021) [40] NGUYEN-THANH, V. M., ZHUANG, X., and RABCZUK, T. A deep energy method for finite deformation hyperelasticity. European Journal of Mechanics-A/Solids, 80, 103874(2020) [41] ABUEIDDA, D. W., LU, Q., and KORIC, S. Meshless physics-informed deep learning method for three-dimensional solid mechanics. International Journal for Numerical Methods in Engineering, 122, 7182-7201(2021) [42] FUHG, J. N. and BOUKLAS, N. The mixed deep energy method for resolving concentration features in finite strain hyperelasticity. Journal of Computational Physics, 451, 110839(2022) [43] HENKES, A., WESSELS, H., and MAHNKEN, R. Physics informed neural networks for continuum micromechanics. Computer Methods in Applied Mechanics and Engineering, 393, 114790(2022) [44] WU, C., ZHU, M., TAN, Q., KARTHA, Y., and LU, L. A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering, 403, 115671(2023) [45] RAO, C. P., SUN, H., and LIU, Y. Physics-informed deep learning for computational elastodynamics without labeled data. Journal of Engineering Mechanics, 147, 04021043(2021) [46] ZHANG, E., DAO, M., KARNIADAKIS, G. E., and SURESH, S. Analyses of internal structures and defects in materials using physics-informed neural networks. Science Advances, 8, eabk0644(2022) [47] LU, L., PESTOURIE, R., YAO, W., WANG, Z., VERDUGO, F., and JOHNSON, S. G. Physicsinformed neural networks with hard constraints for inverse design. SIAM Journal on Scientific Computing, 43, B1105-B1132(2021) [48] ROHRHOFER, F. M., POSCH, S., GÖSSNITZER, C., and GEIGER, B. C. On the role of fixed points of dynamical systems in training physics-informed neural networks. arXiv Preprint, arXiv:2203.13648(2022) https://doi.org/10.48550/arXiv.2203.13648 [49] MCCLENNY, L. D. and BRAGA-NETO, U. M. Self-adaptive physics-informed neural networks using a soft attention mechanism. arXiv Preprint, arXiv:2009.04544(2020) https://doi.org/10.48550/arXiv.2009.04544 [50] RUMELHART, D. E., HINTON, G. E., and WILLIAMS, R. J. Learning representations by back- propagating errors. nature, 323, 533-536(1986) [51] BAYDIN, A. G., PEARLMUTTER, B. A., RADUL, A. A., and SISKIND, J. M. Automatic differentiation in machine learning:a survey. The Journal of Machine Learning Research, 18, 5595-5637(2017) [52] MARGOSSIAN, C. C. A review of automatic differentiation and its efficient implementation. Wires Data Mining and Knowledge Discovery, 9, e1305(2019) [53] MATTEY, R. and GHOSH, S. A novel sequential method to train physics informed neural net- works for Allen Cahn and Cahn Hilliard equations. Computer Methods in Applied Mechanics and Engineering, 390, 114474(2022) [54] STEPHANY, R. and EARLS, C. PDE-read:human-readable partial differential equation discovery using deep learning. Neural Networks, 154, 360-382(2022) [55] LOGG, A. and WELLS, G. N. DOLFIN:automated finite element computing. ACM Transactions on Mathematical Software, 37, 20(2011) [56] BERG, J. and NYSTRÖM, K. Neural networks as smooth priors for inverse problems for PDEs. Journal of Computational Mathematics and Data Science, 1, 100008(2021) [57] THAKOLKARAN, P., JOSHI, A., ZHENG, Y., FLASCHEL, M., DE LORENZIS, L., and KUMAR, S. NN-Euclid:deep-learning hyperelasticity without stress data. Journal of the Mechanics and Physics of Solids, 169, 105076(2022) [58] FREUTEL, M., SCHMIDT, H., DÜRSELEN, L., IGNATIUS, A., and GALBUSERA, F. Finite element modeling of soft tissues:material models, tissue interaction and challenges. Clinical Biomechanics, 29, 363-372(2014) [59] LIN, S., MORGANT, M. C., MARÍN-CASTRILLÓN, D. M., WALKER, P. M., AHO GLÉLÉ, L. S., BOUCHER, A., PRESLES, B., BOUCHOT, O., and LALANDE, A. Aortic local biomechanical properties in ascending aortic aneurysms. Acta Biomaterialia, 149, 40-50(2022) [60] LIU, M., LIANG, L., SULEJMANI, F., LOU, X., IANNUCCI, G., CHEN, E., LESHNOWER, B., and SUN, W. Identification of in vivo nonlinear anisotropic mechanical properties of ascending thoracic aortic aneurysm from patient-specific CT scans. Scientific Reports, 9, 12983(2019) [61] LEE, C. H., LAURENCE, D. W., ROSS, C. J., KRAMER, K. E., BABU, A. R., JOHNSON, E. L., HSU, M. C., AGGARWAL, A., MIR, A., BURKHART, H. M., TOWNER, R. A., BAUMWART, R., and WU, Y. Mechanics of the tricuspid valve——from clinical diagnosis/treatment, in-vivo and in-vitro investigations, to patient-specific biomechanical modeling. Bioengineering, 6, 2(2019) [62] NARANG, H., REGO, B. V., KHALIGHI, A. H., ALY, A., POUCH, A. M., GORMAN, R. C., GORMAN, J. H., III, and SACKS, M. S. Pre-surgical prediction of ischemic mitral regurgitation recurrence using in vivo mitral valve leaflet strains. Annals of Biomedical Engineering, 49, 3711-3723(2021) [63] WU, W., CHING, S., MAAS, S. A., LASSO, A., SABIN, P., WEISS, J. A., and JOLLEY, M. A. A computational framework for atrioventricular valve modeling using open-source software. Journal of Biomechanical Engineering, 144, 101012(2022) |