[1] GAO, P. X., YU, T., ZHANG, Y. L., WANG, J., and ZHAI, J. Y. Vibration analysis and control technologies of hydraulic pipeline system in aircraft:a review. Chinese Journal of Aeronautics, 34(4), 83-114(2021) [2] GUO, Z. L., NI, Q., CHEN, W., DAI, H. L., and WANG, L. Dynamic analysis and regulation of the flexible pipe conveying fluid with a hard-magnetic soft segment. Applied Mathematics and Mechanics (English Edition), 43(9), 1415-1430(2022) https://doi.org/10.1007/s10483-022-2901-9 [3] SHEN, X. K., FENG, K. X., XU, H. M., WANG, G. Q., ZHANG, Y. S., DAI, Y., and YUN, W. Y. Reliability analysis of bending fatigue life of hydraulic pipeline. Reliability Engineering & System Safety, 231, 109019(2023) [4] FAN, X., ZHU, C. A., MAO, X. Y., and DING, H. Adjacent mode resonance of a hydraulic pipe system consisting of parallel pipes coupled at middle points. Applied Mathematics and Mechanics (English Edition), 44(3), 363-380(2023) https://doi.org/10.1007/s10483-023-2967-6 [5] FAN, X., ZHU, C. A., MAO, X. Y., and DING, H. Resonance regulation on a hydraulic pipe via boundary excitations. International Journal of Mechanical Sciences, 252, 108375(2023) [6] ZHOU, J., CHANG, X. P., XIONG, Z. J., and LI, Y. H. Stability and nonlinear vibration analysis of fluid-conveying composite pipes with elastic boundary conditions. Thin-Walled Structures, 179, 109597(2022) [7] ZHOU, J., CHANG, X. P., and LI, Y. H. Nonlinear vibration analysis of functionally graded flow pipelines under generalized boundary conditions based on homotopy analysis. Acta Mechanica, 233(12), 5447-5463(2022) [8] LI, Q., LIU, W., LU, K., and YUE, Z. F. Nonlinear parametric vibration of a fluid-conveying pipe flexibly restrained at the ends. Acta Mechanica Solida Sinica, 33(3), 327-346(2020) [9] MA, Y. Q., YOU, Y. X., CHEN, K., and FENG, A. C. Analysis of vibration stability of fluid conveying pipe on the two-parameter foundation with elastic support boundary conditions. Journal of Ocean Engineering and Science (2022) https://doi.org/10.1016/j.joes.2022.11.002 [10] ASKARIAN, A. R., PERMOON, M. R., ZAHEDI, M., and SHAKOURI, M. Stability analysis of viscoelastic pipes conveying fluid with different boundary conditions described by fractional Zener model. Applied Mathematical Modelling, 103, 750-763(2022) [11] MAO, X. Y., SHU, S., FAN, X., DING, H., and CHEN, L. Q. An approximate method for pipes conveying fluid with strong boundaries. Journal of Sound and Vibration, 505, 116157(2021) [12] CHEN, W. J., CAO, Y. M., GUO, X. M., MA, H., WEN, B. C., and WANG, B. Nonlinear vibration analysis of pipeline considering the effects of soft nonlinear clamp. Applied Mathematics and Mechanics (English Edition), 43(10), 1555-1568(2022) https://doi.org/10.1007/s10483-022-2904-9 [13] WEI, S., YAN, X., FAN, X., MAO, X. Y., DING, H., and CHEN, L. Q. Vibration of fluid-conveying pipe with nonlinear supports at both ends. Applied Mathematics and Mechanics (English Edition), 43(6), 845-862(2022) https://doi.org/10.1007/s10483-022-2857-6 [14] GUO, X. M., CAO, Y. M., MA, H., XIAO, C. L., and WEN, B. C. Dynamic analysis of an Lshaped liquid-filled pipe with interval uncertainty. International Journal of Mechanical Sciences, 217, 107040(2022) [15] GUO, X. M., GAO, P. X., MA, H., LI, H., WANG, B., HAN, Q. K., and WEN, B. C. Vibration characteristics analysis of fluid-conveying pipes concurrently subjected to base excitation and pulsation excitation. Mechanical Systems and Signal Processing, 189, 110086(2023) [16] GUO, X. M., CAO, Y. M., MA, H., LI, H., WANG, B., HAN, Q. K., and WEN, B. C. Vibration analysis for a parallel fluid-filled pipelines-casing model considering casing flexibility. International Journal of Mechanical Sciences, 231, 107606(2022) [17] ZHANG, D. C., JUAN, M. X., ZHANG, Z. Y., GAO, P. X., JIN, J., WANG, J. J., and YU, T. A dynamic modeling approach for vibration analysis of hydraulic pipeline system with pipe fitting. Applied Acoustics, 197, 108952(2022) [18] GAO, P. X., ZHAI, J. Y., YAN, Y. Y., HAN, Q. K., QU, F. Z., and CHEN, X. H. A model reduction approach for the vibration analysis of hydraulic pipeline system in aircraft. Aerospace Science and Technology, 49, 144-153(2016) [19] GAO, P. X., ZHANG, Y. L., LIU, X. F., YU, T., and WANG, J. Vibration analysis of aero parallel-pipeline systems based on a novel reduced order modeling method. Journal of Mechanical Science and Technology, 34(8), 3137-3146(2020) [20] ZHANG, Y., SUN, W., MA, H. W., JI, W. H., and MA, H. Semi-analytical modeling and vibration analysis for U-shaped, Z-shaped and regular spatial pipelines supported by multiple clamps. European Journal of Mechanics-A/Solids, 97, 104797(2023) [21] ZHANG, L., ZHANG, T., OUYANG, H., LI, T. Y., and ZHANG, S. K. Receptance-based natural frequency assignment of a real fluid-conveying pipeline system with interval uncertainty. Mechanical Systems and Signal Processing, 179, 109321(2022) [22] DOU, B., DING, H., MAO, X. Y., FENG, H. R., and CHEN, L. Q. Modeling and parametric studies of retaining clips on pipes. Mechanical Systems and Signal Processing, 186, 109912(2023) [23] PAÏDOUSSIS, M. P. The canonical problem of the fluid-conveying pipe and radiation of the knowledge gained to other dynamics problems across applied mechanics. Journal of Sound and Vibration, 310(3), 462-492(2008) [24] PAÏDOUSSIS, M. P. Pipes conveying fluid:a fertile dynamics problem. Journal of Fluids and Structures, 114, 103664(2022) [25] GUO, Y., ZHU, B., and LI, Y. H. Nonlinear dynamics of fluid-conveying composite pipes subjected to time-varying axial tension in sub-and super-critical regimes. Applied Mathematical Modelling, 101, 632-653(2022) [26] ZHU, B., GUO, Y., CHEN, B., and LI, Y. H. Nonlinear nonplanar dynamics of porous functionally graded pipes conveying fluid. Communications in Nonlinear Science and Numerical Simulation, 117, 106907(2023) [27] SHAO, Y. F., FAN, X., SHU, S., DING, H., and CHEN, L. Q. Natural frequencies, critical velocity and equilibriums of fixed-fixed Timoshenko pipes conveying fluid. Journal of Vibration Engineering & Technologies, 10, 1623-1635(2022) [28] ZHOU, K., NI, Q., CHEN, W., DAI, H. L., PENG, Z. R., and WANG, L. New insight into the stability and dynamics of fluid-conveying supported pipes with small geometric imperfections. Applied Mathematics and Mechanics (English Edition), 42(5), 703-720(2021) https://doi.org/10.1007/s10483-021-2729-6 [29] YUAN, J. R. and DING, H. Dynamic model of curved pipe conveying fluid based on the absolute nodal coordinate formulation. International Journal of Mechanical Sciences, 232, 107625(2022) [30] ZHU, B., CHEN, B., GUO, Y., and WANG, Y. Q. Analytical solutions for free and forced vibrations of elastically supported pipes conveying super-critical fluids. Acta Mechanica, 234, 831-853(2023) [31] DENG, T. C., DING, H., and CHEN, L. Q. Critical velocity and supercritical natural frequencies of fluid-conveying pipes with retaining clips. International Journal of Mechanical Sciences, 222, 107254(2022) [32] HAO, M. Y., DING, H., MAO, X. Y., and CHEN, L. Q. Stability and nonlinear response analysis of parametric vibration for elastically constrained pipes conveying pulsating fluid. Acta Mechanica Solida Sinica, 36, 230-240(2023) [33] LI, M., CHEN, X. C., CHANG, X. P., QIN, Y., and LI, Y. H. General analytical solution for vibrations of pipes with arbitrary discontinuities and generalized boundary condition on Pasternak foundation. Mechanical Systems and Signal Processing, 162, 107910(2022) [34] ALCHEIKH, N., OUAKAD, H. M., MBAREK, S. B., and YOUNIS, M. I. Crossover/veering in v-shaped MEMS resonators. Journal of Microelectromechanical Systems, 31(1), 74-86(2022) [35] HAJJAJ, A. Z., ALFOSAIL, F. K., JABER, N., ILYAS, S., and YOUNIS, M. I. Theoretical and experimental investigations of the crossover phenomenon in micromachined arch resonator:part I-linear problem. Nonlinear Dynamics, 99(1), 393-405(2019) [36] BENDIKSEN, O. O. Localization phenomena in structural dynamics. Chaos, Solitons and Fractals, 11, 1621-1660(2000) [37] SHAO, Y. F. and DING, H. Evaluation of gravity effects on the vibration of fluid-conveying pipes. International Journal of Mechanical Sciences, 248, 108230(2023) [38] LU, P. and SHENG, H. Y. Exact eigen-relations of clamped-clamped and simply supported pipes conveying fluids. International Journal of Applied Mechanics, 4(3), 1250035(2012) [39] ZHANG, T., OUYANG, H., ZHANG, Y. O., and LV, B. L. Nonlinear dynamics of straight fluidconveying pipes with general boundary conditions and additional springs and masses. Applied Mathematical Modelling, 40(17-18), 7880-7900(2016) [40] ZHOU, K., NI, Q., DAI, H. L., and WANG, L. Nonlinear forced vibrations of supported pipe conveying fluid subjected to an axial base excitation. Journal of Sound and Vibration, 471, 115189(2020) [41] ZHOU, K., NI, Q., CHEN, W., DAI, H. L., HAGEDORN, P., and WANG, L. Static equilibrium configuration and nonlinear dynamics of slightly curved cantilevered pipe conveying fluid. Journal of Sound and Vibration, 490, 115711(2021) [42] DAI, H. L., HE, Y. X., ZHOU, K., PENG, Z. R., WANG, L., and HAGEDORN, P. Utilization of nonlinear vibrations of soft pipe conveying fluid for driving underwater bioinspired robot. Applied Mathematics and Mechanics (English Edition), 43(7), 1109-1124(2022) https://doi.org/10.1007/s10483-022-2866-7 [43] ZHOU, K., NI, Q., GUO, Z. L., YAN, H., DAI, H. L., and WANG, L. Nonlinear dynamic analysis of cantilevered pipe conveying fluid with local rigid segment. Nonlinear Dynamics, 109(3), 1571-1589(2022) |