[1] OUDICH, M., GERALD, N. J., DENG, Y., and JING, Y. Tailoring structure-borne sound through bandgap engineering in phononic crystals and metamaterials:a comprehensive review. Advanced Functional Materials, 33(2), 2206309(2023) [2] KENNEDY, J. and LIM, C. W. Machine learning and deep learning in phononic crystals and metamaterials:a review. Materials Today Communications, 33, 104606(2022) [3] LEE, G., LEE, D., PARK, J., JANG, Y., KIM, M., and RHO, J. Piezoelectric energy harvesting using mechanical metamaterials and phononic crystals. Communications Physics, 5(1), 94(2022) [4] LI, W., MENG, F., CHEN, Y., LI, Y. F., and HUANG, X. Topology optimization of photonic and phononic crystals and metamaterials:a review. Advanced Theory and Simulations, 2(7), 1900017(2019) [5] JO, S. H. and YOUN, B. D. Longitudinal wave localization using a one-dimensional phononic crystal with differently patterned double defects. International Journal of Mechanical Sciences, 237, 107783(2023) [6] JIN, J., HU, N. D., and HU, H. P. Size effects on the mixed modes and defect modes for a nanoscale phononic crystal slab. Applied Mathematics and Mechanics (English Edition), 44(1), 21-34(2023) https://doi.org/10.1007/s10483-023-2945-6 [7] MEHANEY, A. and ELSAYED, H. A. Hydrostatic pressure effects on a one-dimensional defective phononic crystal comprising a polymer material. Solid State Communications, 322, 114054(2020) [8] ZHANG, X., LI, Y., WANG, Y., JIA, Z., and LUO, Y. Narrow-band filter design of phononic crystals with periodic point defects via topology optimization. International Journal of Mechanical Sciences, 212, 106829(2021) [9] HE, F. Y., SHI, Z. Y., QIAN, D. H., LU, Y. K., XIANG, Y. J., and FENG, X. L. Flexural wave bandgap properties of phononic crystal beams with interval parameters. Applied Mathematics and Mechanics (English Edition), 44(2), 173-188(2023) https://doi.org/10.1007/s10483-023-2947-8 [10] JIANG, S., DAI, L. X., CHEN, H., HU, H. P., JIANG, W., and CHEN, X. D. Folding beam-type piezoelectric phononic crystal with low-frequency and broad band gap. Applied Mathematics and Mechanics (English Edition), 38(3), 411-422(2017) https://doi.org/10.1007/s10483-017-2171-7 [11] JO, S. H., YOON, H., SHIN, Y. C., and YOUN, B. D. Revealing defect-mode-enabled energy localization mechanisms of a one-dimensional phononic crystal. International Journal of Mechanical Sciences, 215, 106950(2022) [12] YAN, W., ZHANG, G., and GAO, Y. Investigation on the tunability of the band structure of twodimensional magnetorheological elastomers phononic crystals plate. Journal of Magnetism and Magnetic Materials, 544, 168704(2022) [13] DENG, T., ZHANG, S., and GAO, Y. A magnetic-dependent vibration energy harvester based on the tunable point defect in 2D magneto-elastic phononic crystals. Crystals, 9(5), 261(2019) [14] WU, L. Y., WU, M. L., and CHEN, L. W. The narrow pass band filter of tunable 1D phononic crystals with a dielectric elastomer layer. Smart Materials and Structures, 18(1), 015011(2008) [15] ARRANGOIZ-ARRIOLA, P., WOLLACK, E. A., PECHAL, M., and WITMER, J. D. Coupling a superconducting quantum circuit to a phononic crystal defect cavity. Physical Review X, 8(3), 031007(2018) [16] SHAKERI, A., DARBARI, S., and MORAVVEJ-FARSHI, M. K. Designing a tunable acoustic resonator based on defect modes, stimulated by selectively biased PZT rods in a 2D phononic crystal. Ultrasonics, 92, 8-12(2019) [17] THOMES, R. L., BELI, D., and JUNIOR, C. D. M. Space-time wave localization in electromechanical metamaterial beams with programmable defects. Mechanical Systems and Signal Processing, 167, 108550(2022) [18] TIAN, Y., ZHANG, W., TAN, Z., and CHO, C. Chiral edge states for phononic crystals based on shunted piezoelectric materials. Extreme Mechanics Letters, 50, 101568(2022) [19] ALY, A. H., NAGATY, A., and KHALIFA, Z. Piezoelectric material and one-dimensional phononic crystal. Surface Review and Letters, 26(2), 1850144(2019) [20] WU, Y., MA, Y., ZHENG, H., and RAMAKRISHNA, S. Piezoelectric materials for flexible and wearable electronics:a review. Materials and Design, 211, 110164(2021) [21] JO, S. H. and YOUN, B. D. An improved analytical model that considers lateral effects of a phononic crystal with a piezoelectric defect for elastic wave energy harvesting. International Journal of Mechanical Sciences, 205, 106593(2021) [22] HE, Z., ZHANG, G., CHEN, X., CONG, Y., GU, S., and HONG, J. Elastic wave harvesting in piezoelectric-defect-introduced phononic crystal microplates. International Journal of Mechanical Sciences, 239, 107892(2023) [23] LYU, X. F., FANG, X., ZHANG, Z. Q., HUANG, Z. L., and CHUANG, K. C. Highly localized and efficient energy harvesting in a phononic crystal beam:defect placement and experimental validation. Crystals, 9(8), 391(2019) [24] HOSSEINKHANI, A., EBRAHIMIAN, F., YOUNESIAN, D., and MOAYEDIZADEH, A. Defected meta-lattice structures for the enhanced localized vibrational energy harvesting. Nano Energy, 100, 107488(2022) [25] JO, S. H. and YOUN, B. D. An explicit solution for the design of a target-frequency-customized, piezoelectric-defect-introduced phononic crystal for elastic wave energy harvesting. Journal of Applied Physics, 130(18), 184902(2021) [26] ZHONG, J. and XIANG, J. Designing a phononic crystal with a large defect to enhance elastic wave energy localization and harvesting. Japanese Journal of Applied Physics, 61(1), 017002(2022) [27] JO, S. H., LEE, D., YOON, H., and YOUN, B. D. Double piezoelectric defects in phononic crystals for ultrasonic transducers. Journal of Physics D:Applied Physics, 56(7), 074002(2023) [28] JO, S. H. and YOUN, B. D. Enhanced ultrasonic wave generation using energy-localized behaviors of phononic crystals. International Journal of Mechanical Sciences, 228, 107483(2022) [29] JO, S. H., SHIN, Y. C., CHOI, W., YOON, H., YOUN, B. D., and KIM, M. Double defectsinduced elastic wave coupling and energy localization in a phononic crystal. Nano Convergence, 8(1), 27(2021) [30] LUO, Y. S., YANG, S. X., LYU, X. F., CHUANG, K. C., LIU, Y., HE, J., and CHENG, Q. C. Identifying delamination in carbon fiber composites based on defect modes in imperfect phononic crystals. Journal of Applied Physics, 131(5), 055109(2022) [31] WANG, Y., PERRAS, E., GOLUB, M. V., FOMENKO, S. I., ZHANG, C., and CHEN, W. Manipulation of the guided wave propagation in multilayered phononic plates by introducing interface delaminations. European Journal of Mechanics-A/Solids, 88, 104266(2021) [32] ZHOU, W. and LIM, C. W. Topological edge modeling and localization of protected interface modes in 1D phononic crystals for longitudinal and bending elastic waves. International Journal of Mechanical Sciences, 159, 359-372(2019) [33] LI, P. and BIWA, S. Flexural waves in a periodic non-uniform Euler-Bernoulli beam:analysis for arbitrary contour profiles and applications to wave control. International Journal of Mechanical Sciences, 188, 105948(2020) [34] ERTURK, A. and INMAN, D. J. A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. Journal of Vibration and Acoustics, 130(4), 041002(2008) [35] WANG, G. Analysis of bimorph piezoelectric beam energy harvesters using Timoshenko and EulerBernoulli beam theory. Journal of Intelligent Material Systems and Structures, 24(2), 226-239(2013) [36] ALI, A., PASHA, R. A., ELAHI, H., SHEERAZ, M. A., BIBI, S., HASSAN, Z. U., EUGENI, M., and GAUDENZI, P. Investigation of deformation in bimorph piezoelectric actuator:analytical, numerical and experimental approach. Integrated Ferroelectrics, 201(1), 94-109(2019) [37] CHEN, N., YAN, P., and OUYANG, J. A generalized approach on bending and stress analysis of beams with piezoelectric material bonded. Sensors and Actuators A:Physical, 290, 54-61(2019) [38] YI, J., WU, Z., XIA, R., and LI, Z. Reconfigurable metamaterial for asymmetric and symmetric elastic wave absorption based on exceptional point in resonant bandgap. Applied Mathematics and Mechanics (English Edition), 44(1), 1-20(2023) https://doi.org/10.1007/s10483-023-2949-7 [39] LI, Z., LIU, J., HU, B., WANG, Y., and SHEN, H. Wave propagation analysis of porous functionally graded piezoelectric nanoplates with a visco-Pasternak foundation. Applied Mathematics and Mechanics (English Edition), 44(1), 35-52(2023) https://doi.org/10.1007/s10483-023-2953-7 [40] ERTURK, A. and INMAN, D. J. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Materials and Structures, 18(2), 025009(2009) [41] YOON, H., YOUN, B. D., and KIM, H. S. Kirchhoff plate theory-based electromechanicallycoupled analytical model considering inertia and stiffness effects of a surface-bonded piezoelectric patch. Smart Materials and Structures, 25(2), 025017(2016) [42] MAZILU, T., DUMITRIU, M., and TUDORACHE, C. On the dynamics of interaction between a moving mass and an infinite one-dimensional elastic structure at the stability limit. Journal of Sound and Vibration, 330(5), 3729-3743(2011) [43] NORRIS, A. N. and PACKO, P. Non-symmetric flexural wave scattering and one-way extreme absorption. The Journal of the Acoustical Society of America, 146(1), 873-883(2019) [44] DONG, H. W., SU, X. X., WANG, Y. S., and ZHANG, C. Topological optimization of twodimensional phononic crystals based on the finite element method and genetic algorithm. Structural and Multidisciplinary Optimization, 50, 593-604(2014) [45] VERES, I. A., BERER, T., and MATSUDA, O. Complex band structures of two dimensional phononic crystals:analysis by the finite element method. Journal of Applied Physics, 114(8), 083519(2013) [46] XIE, L., XIA, B., LIU, J., HUANG, G., and LEI, J. An improved fast plane wave expansion method for topology optimization of phononic crystals. International Journal of Mechanical Sciences, 120, 171-181(2017) [47] CAO, Y., HOU, Z., and LIU, Y. Convergence problem of plane-wave expansion method for phononic crystals. Physics Letters A, 327(2-3), 247-253(2004) [48] HAN, L., ZHANG, Y., NI, Z. Q., ZHANG, Z. M., and JIANG, L. H. A modified transfer matrix method for the study of the bending vibration band structure in phononic crystal Euler beams. Physica B:Condensed Matter, 407(23), 4579-4583(2012) [49] SHU, H., LIU, W., LI, S., DONG, L., WANG, W., LIU, S., and ZHAO, D. Research on flexural wave band gap of a thin circular plate of piezoelectric radial phononic crystals. Journal of Vibration and Control, 22(7), 1777-1789(2016) [50] JIANG, P., WANG, X. P., CHEN, T. N., and ZHU, J. Band gap and defect state engineering in a multi-stub phononic crystal plate. Journal of Applied Physics, 117(15), 154301(2015) [51] LI, Y., CHEN, T., WANG, X., MA, T., and JIANG, P. Acoustic confinement and waveguiding in two-dimensional phononic crystals with material defect states. Journal of Applied Physics, 116(2), 024904(2014) [52] KHAN, A., KHAN, F. R., and KIM, H. S. Electro-active paper as a flexible mechanical sensor, actuator and energy harvesting transducer:a review. Sensors, 18(10), 3474(2018) [53] ZASZCZYNSKA, A., GRADYS, A., and SAJKIEWICZ, P. Progress in the applications of smart piezoelectric materials for medical devices. Polymers, 12(11), 2754(2020) [54] GUO, Y., LI, L., and CHUANG, K. C. Analysis of bending waves in phononic crystal beams with defects. Crystals, 8(1), 21(2018) [55] ZHANG, Y., NI, Z. Q., JIANG, L. H., HAN, L., and KANG, X. W. Study of the bending vibration characteristic of phononic crystals beam-foundation structures by Timoshenko beam theory. International Journal of Modern Physics B, 29(20), 1550136(2015) [56] ZHAO, P., YUAN, L., MA, T., and WEI, H. Study on tunable band gap of flexural vibration in a phononic crystals beam with PBT. Crystals, 11(11), 1346(2021) |