1 |
KRAUS, A. D., AZIZ, A., WELTY, J., and SEKULIC, D. P. Extended surface heat transfer. Applied Mechanics Reviews, 54 (5), B92 (2001)
|
2 |
GORLA, R. S. R., and BAKIER, A. Y. Thermal analysis of natural convection and radiation in porous fins. International Communications in Heat and Mass Transfer, 38 (5), 638- 645 (2011)
|
3 |
AZIZ, A., and TORABI, M. Convective-radiative fins with simultaneous variation of thermal conductivity, heat transfer coefficient, and surface emissivity with temperature. Heat Transfer Asian Research, 41 (2), 99- 113 (2012)
|
4 |
KUNDU, B., DAS, R., WANKHADE, P. A., and LEE, K. S. Heat transfer improvement of a wet fin under transient response with a unique design arrangement aspect. International Journal of Heat and Mass Transfer, 127, 1239- 1251 (2018)
|
5 |
WANG, F. Z., VARUN-KUMAR, R. S., SOWMYA, G., EL-ZAHAR, E. R., PRASANNAKUMARA, B. C., IJAZ-KHAN, M., KHAN, S. U., MALIK, M. Y., and XIA, W. F. LSM and DTM-Páde approximation for the combined impacts of convective and radiative heat transfer on an inclined porous longitudinal fin. Case Studies in Thermal Engineering, 35, 101846 (2022)
|
6 |
KIWAN,S., and AL-NIMR, M. A. Using porous fins for heat transfer enhancement. Journal of Heat Transfer, 123 (4), 790- 795 (2001)
|
7 |
KIWAN, S. Effect of radiative losses on the heat transfer from porous fins. International Journal of Thermal Sciences, 46 (10), 1046- 1055 (2007)
|
8 |
DAS, R., SINGH, K., AKAY, B., and GOGOI, T. K. Application of artificial bee colony algorithm for maximizing heat transfer in a perforated fin. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 232 (1), 38- 48 (2018)
|
9 |
NABATI, M., JALALVAND, M., and TAHERIFAR, S. Sinc collocation approach through thermal analysis of porous fin with magnetic field. Journal of Thermal Analysis and Calorimetry, 144 (6), 2145- 2158 (2021)
|
10 |
PRASANNAKUMARA, B. C. Assessment of the local thermal non-equilibrium condition for nanofluid flow through porous media: a comparative analysis. Indian Journal of Physics, 96 (8), 2475- 2483 (2022)
|
11 |
HOSHYAR, H. A., GANJI, D. D., and MAJIDIAN, A. R. Least square method for porous fin in the presence of uniform magnetic field. Journal of Applied Fluid Mechanics, 9 (2), 661- 668 (2016)
|
12 |
OGUNTALA, G., SOBAMOWO, G., ABD-ALHAMEED, R., and JONES, S. Efficient iterative method for investigation of convective-radiative porous fin with internal heat generation under a uniform magnetic field. International Journal of Applied and Computational Mathematics, 5 (1), 1- 19 (2019)
|
13 |
DAS, R., and KUNDU, B. Simultaneous estimation of heat generation and magnetic field in a radial porous fin from surface temperature information. International Communications in Heat and Mass Transfer, 127, 105497 (2021)
|
14 |
GIREESHA, B. J., SOWMYA, G., and SRIKANTHA, N. Heat transfer in a radial porous fin in the presence of magnetic field: a numerical study. International Journal of Ambient Energy, 43 (1), 3402- 3409 (2022)
|
15 |
AZIZ, A., and KHANI, F. Convection-radiation from a continuously moving fin of variable thermal conductivity. Journal of the Franklin Institute, 348 (4), 640- 651 (2011)
|
16 |
BHANJA, D., KUNDU, B., and AZIZ, A. Enhancement of heat transfer from a continuously moving porous fin exposed in convective-radiative environment. Energy Conversion and Management, 88, 842- 853 (2014)
|
17 |
TURKYILMAZOGLU, M. Heat transfer from moving exponential fins exposed to heat generation. International Journal of Heat and Mass Transfer, 116, 346- 351 (2018)
|
18 |
PAVITHRA, C. G., GIREESHA, B. J., and KEERTHI, M. L. Heat transfer analysis of a convective radiative porous moving longitudinal fin exposed to magnetic field by adomian decomposition Sumudu transform method. Physica Scripta, 98 (4), 045208 (2023)
|
19 |
JAGADEESHA, K. C., KUMAR, R. V., ELATTAR, S., KUMAR, R., PRASANNAKUMARA, B. C., KHAN, M. I., and MALIK, M. Y. A physical depiction of a semi-spherical fin unsteady heat transfer and thermal analysis of a fully wetted convective-radiative semi-spherical fin. Journal of the Indian Chemical Society, 99 (9), 100457 (2022)
|
20 |
MILLER, K. S., and ROSS, B. An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York (1993)
|
21 |
ADOMIAN, G. Solving Frontier Problems of Physics, Springer Science & Business Media, New York (2013)
|
22 |
WATUGALA, G. Sumudu transform: a new integral transform to solve differential equations and control engineering problems. Integrated Education, 24 (1), 35- 43 (1993)
|
23 |
PATEL, T., and MEHER, R. A study on temperature distribution, efficiency and effectiveness of longitudinal porous fins by using adomian decomposition Sumudu transform method. Procedia Engineering, 127, 751- 758 (2015)
|
24 |
PATEL, T., and MEHER, R. Adomian decomposition Sumudu transform method for solving a solid and porous fin with temperature dependent internal heat generation. Springer Plus, 5 (1), 1- 18 (2016)
|
25 |
KEERTHI, M. L., GIREESHA, B. J., and SOWMYA, G. Numerical investigation of efficiency of fully wet porous convective-radiative moving radial fin in the presence of shape-dependent hybrid nanofluid. International Communications in Heat and Mass Transfer, 138, 106341 (2022)
|
26 |
GOUD, J. S., SRILATHA, P., KUMAR, R. V., KUMAR, K. T., KHAN, U., RAIZAH, Z., and GALAL, A. M. Role of ternary hybrid nanofluid in the thermal distribution of a dovetail fin with the internal generation of heat. Case Studies in Thermal Engineering, 35, 102113 (2022)
|
27 |
ABDULRAHMAN, A., GAMAOUN, F., KUMAR, R. V., KHAN, U., GILL, H. S., NAGARAJA, K. V., and GALAL, A. M. Study of thermal variation in a longitudinal exponential porous fin wetted with TiO2-SiO2/hexanol hybrid nanofluid using hybrid residual power series method. Case Studies in Thermal Engineering, 43, 102777 (2023)
|
28 |
ARIF, M., DI PERSIO, L., KUMAM, P., WATTHAYU, W., and AKGÜL, A. Heat transfer analysis of fractional model of couple stress Casson tri-hybrid nanofluid using dissimilar shape nanoparticles in blood with biomedical applications. Scientific Reports, 13 (1), 4596 (2023)
|