Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (5): 885-906.doi: https://doi.org/10.1007/s10483-025-3254-9
收稿日期:
2024-11-11
修回日期:
2025-03-27
出版日期:
2025-05-07
发布日期:
2025-05-07
Xindan GUO1, Qiming LIU2,†(), Xu HAN1,2, Tao LI2, Bin'an JIANG3, Canwei CAI3
Received:
2024-11-11
Revised:
2025-03-27
Online:
2025-05-07
Published:
2025-05-07
Contact:
Qiming LIU
E-mail:q.m.liu@hebut.edu.cn
Supported by:
中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(5): 885-906.
Xindan GUO, Qiming LIU, Xu HAN, Tao LI, Bin'an JIANG, Canwei CAI. High-precision numerical modeling of the projectile launch and failure mechanism analysis of projectile-borne components[J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(5): 885-906.
"
Name | Value | Unit | Name | Value | Unit |
---|---|---|---|---|---|
Density | kg/m3 | Reference temperature | 293 | K | |
Bulk modulus | kPa | Thermal conductivity | 0 | J/(kg ·K) | |
Specific heat | 0 | J/(kg · K) | Reaction growth constant | 0.23 | mm-1 |
Specific energy | kJ/m3 | Reaction growth exponent | 0.5 | ||
Parameter | 1.003 3 | Burn rate coefficient | 0.650 0 | ||
Yield stress | kPa | Burn rate exponent | 0.954 5 | ||
Shear modulus | kPa | Ignition front velocity coefficient | 40.37 | m/s |
"
Variable | Experiment 1 | Vacuum model | Air model | Band model | |||
Value | Error/% | Value | Error/% | Value | Error/% | ||
Time/ms | 11.25 | 11.00 | 2.22 | 11.10 | 1.33 | 11.90 | 5.78 |
Pressure/MPa | 241.03 | 254.72 | 5.68 | 255.62 | 6.05 | 234.95 | 2.52 |
Velocity/ | 693 | 664 | 4.18 | 661 | 4.62 | 640 | 7.65 |
Variable | Experiment 2 | Vacuum model | Air model | Band model | |||
Value | Error/% | Value | Error/% | Value | Error/% | ||
Time/ms | 12.83 | 12.80 | 0.23 | 12.90 | 0.55 | 12.12 | 5.53 |
Pressure/MPa | 194.33 | 197.31 | 1.53 | 197.19 | 1.47 | 190.11 | 2.17 |
Velocity/ | 664 | 604 | 9.04 | 603 | 9.19 | 587 | 11.60 |
"
Friction coefficient | Spatial location | Time/ms | |||
---|---|---|---|---|---|
Center (0%–25%) | Near-center (25%–50%) | Near-edge (50%–75%) | Edge (75%–100%) | ||
0.05 | Moderate | Moderate | Low | High | 7.5–15.0, 25–30 |
0.10 | Low | Moderate | Moderate | High | 5.0–15.0, 25–30 |
0.15 | Low | Moderate | High | High | 7.5–15.0, 25–30 |
0.20 | High | Moderate | High | High | 7.5–15.0, 25–30 |
0.25 | High | High | High | High | 7.5–17.5, 25–30 |
0.30 | High | High | High | High | 7.5–17.5, 25–30 |
[1] | MI, J., LI, J., ZHANG, X., FENG, K. Q., HU, C. J., WEI, X. K., and YUAN, X. Q.Roll angular rate measurement for high spinning projectiles based on redundant gyroscope system. Micromachines, 11(10), 940 (2020) |
[2] | FRESCONI, F., COOPER, G., CELMINS, I., DESPIRITO, J., and COSTELLO, M.Flight mechanics of a novel guided spin-stabilized projectile concept. Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering, 226(G3), 327–340 (2012) |
[3] | YAN, A., PI, A. G., YANG, H., HUANG, F. L., and WANG, X. F.Study on the equivalence of penetration overloading for projectile-borne components in nonproportional penetrators. Shock and Vibration, 2022(1), 533064 (2022) |
[4] | VERBERNE, P., MEGUID, S. A., and ELSAYED, E. A.Survivability of embedded microelectronics in precision guided projectiles: modeling and characterization. International Journal of Impact Engineering, 154, 103864 (2021) |
[5] | JANG, J. S., SUNG, H. G., ROH, T. S., and CHOI, D. W.Numerical analysis of interior ballistics through eulerian-lagrangian approach. Journal of Mechanical Science and Technology, 27(8), 2351–2357 (2013) |
[6] | CHENG, C. and ZHANG, X. B.Numerical simulation of two-phase reactive flow with moving boundary. International Journal of Numerical Methods for Heat & Fluid Flow, 23(8), 1277–1290 (2013) |
[7] | CHENG, C. and ZHANG, X. B.Numerical investigation of two-phase reactive flow with two moving boundaries in a two-stage combustion system. Applied Thermal Engineering, 156, 422–431 (2019) |
[8] | HUNG, N. V., DOAN, D. V., DUNG, N. V., and LINH, D. D.A thermodynamic model for interior ballistics of an amphibious rifle. Journal of Science and Technique, 15(4), 48–62 (2020) |
[9] | ZHANG, D. H., WANG, C., SHEN, Y. Y., WEI, Y. J., and XU, H. Y.Dynamic modeling and motion prediction of two projectiles launched successively underwater. Ocean Engineering, 292, 116551 (2024) |
[10] | LUO, Q. and ZHANG, X. B.Numerical simulation of gas-solid two-phase reaction flow with multiple moving boundaries. International Journal of Numerical Methods for Heat & Fluid Flow, 25(2), 375–390 (2015) |
[11] | WANG, J. G., YU, Y. G., ZHOU, L. L., and YE, R.Numerical simulation and optimized design of cased telescoped ammunition interior ballistic. Defence Technology, 14(2), 119–125 (2018) |
[12] | VO, N. D., JUNG, M. Y., OH, D. H., PARK, J. S., MOON, I., and OH, M.Moving boundary modeling for solid propellant combustion. Combustion and Flame, 189, 12–23 (2018) |
[13] | POLEZHAEV, Y. V. and STONIK, O. G.From deflagration to detonation: three modes of combustion. High Temperature, 48(4), 534–540 (2010) |
[14] | ALEXEY, K., VASILIY, P., KSENIA, M., and DMITRY, K.Metalized solid propellant combustion under high-speed blowing flow. Journal of Mechanical Science and Technology, 34(5), 2245–2253 (2020) |
[15] | MIURA, H., MATSUO, A., and NAKAMURA, Y.Numerical prediction of interior ballistics performance of projectile accelerator using granular or tubular solid propellant. Propellants Explosives Pyrotechnics, 38(2), 204–213 (2013) |
[16] | DONG, X. L., RUI, X. T., and LI, C.Interior ballistic two-phase flow model and its calculation for a mixed charge structure. International Communications in Heat and Mass Transfer, 144, 106788 (2023) |
[17] | HOU, Y. D. and ZHANG, X. B.Peridynamic simulation for the laser ignition model of energetic material with cracks. International Journal of Heat and Mass Transfer, 215, 124524 (2023) |
[18] | WANG, Z. J., QIANG, H. F., WANG, T. J., WANG, G., and HOU, X.A thermovisco-hyperelastic constitutive model of HTPB propellant with damage at intermediate strain rates. Mechanics of Time-Dependent Materials, 22(3), 291–314 (2018) |
[19] | BOULKADID, K. M., TRACHE, D., KRAI, S., LEFEBVRE, M. H., JEUNIEAU, L., and DEJEAIFVE, A.Estimation of the ballistic parameters of double base gun propellants. Propellants Explosives Pyrotechnics, 45(5), 751–758 (2020) |
[20] | BI, S. F., HUANG, Y., ZHAO, J. Y., WANG, S. Y., and WANG, H.A parameter determination method of powder burn model based on Levenberg-Marquardt optimization. Journal of Energetic Materials, 2024, 1–19 (2024) |
[21] | WU, Z. Q., WANG, Y., ZHU, L. H., and YANG, F.Design of a projectile-borne data recorder triggered by overload. Electronics, 9(5), 860 (2020) |
[22] | NIU, S. H., LI, B., LI, B. Y., WANG, P. F., and SONG, Y. X.Analysis and design of small-impact magnetoelectric generator. Machines, 11(12), 1040 (2023) |
[23] | ZHANG, Z. J., XU, Z. J., SHAO, X. D., LI, Y. Q., and LI, B. W.Damage boundary of piezoresistive pressure sensor under shock environment. Acta Astronautica, 192, 328–340 (2022) |
[24] | LI, J., LI, C. L., JIANG, M., and ZHOU, D.Mechanical analysis of failure of projectile-borne vibration sensor under high overload. Journal of Physics: Conference Series, 1168(2), 022015 (2019) |
[25] | JIANG, W. C., LU, Y. G., and ZHAO, J. Y.Researching the influence of preload on vibration characteristics in the ballistic recorder vibration damping system. Shock and Vibration, 2024(1), 5868224 (2024) |
[26] | LONG, Y. T., LV, M. T., and HE, H.Failure mechanism and predictive modeling for microbump interconnects drop life under diverse impact angles in advanced packaging. IEEE Transactions on Device and Materials Reliability, 24(2), 241–249 (2024) |
[27] | WONG, E. H., SEAH, S. K. W., VAN DRIEL, W. D., CAERS, J., OWENS, N., and LAI, Y. S.Advances in the drop-impact reliability of solder joints for mobile applications. Microelectronics Reliability, 49(2), 139–149 (2009) |
[28] | SUN, J., XU, S. Q., LU, G. X., WANG, Q., and GONG, A.Ballistic impact experiments of titanium-based carbon-fibre/epoxy laminates. Thin-Walled Structures, 179, 109709 (2022) |
[29] | YANG, Y. X., DAI, K. R., YIN, Q., LIU, P., YU, D., LI, H. J., and ZHANG, H.In-bore dynamic measurement and mechanism analysis of multi-physics environment for electromagnetic railguns. IEEE Access, 9, 16999–17010 (2021) |
[30] | CHAKKA, V., TRABIA, M. B., O'TOOLE, B., SRIDHARALA, S., LADKANY, S., and CHOWDHURY, M.Modeling and reduction of shocks on electronic components within a projectile. International Journal of Impact Engineering, 35(11), 1326–1338 (2008) |
[31] | ZHANG, J. J., LU, G. X., ZHANG, Y., and YOU, Z.A study on ballistic performance of origami sandwich panels. International Journal of Impact Engineering, 156, 103925 (2021) |
[32] | CHAO, N. H., CORDES, J. A., CARLUCCI, D., DEANGELIS, M. E., and LEE, J.The use of potting materials for electronic-packaging survivability in smart munitions. Journal of Electronic Packaging, 133(4), 041003 (2011) |
[33] | JOHNSON, G. R. and COOK, W. H.Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21(1), 31–48 (1985) |
[34] | VERBERNE, P. and MEGUID, S. A.Dynamics of precision-guided projectile launch: fluid-structure interaction. Acta Mechanica, 232(3), 1147–1161 (2021) |
[35] | KHOMENKO, Y. P. and SHIROKOV, V. M.Determining the unsteady combustion behavior of propellants from results of closed-bomb testing. Combustion Explosion and Shock Waves, 42(2), 149–157 (2006) |
[36] | LIU, Q. M., LIU, J., WU, X. F., HAN, X., CAO, L. X., and GUAN, F. J.An inverse reconstruction approach considering uncertainty and correlation for vehicle-vehicle collision accidents. Structural and Multidisciplinary Optimization, 60(2), 681–698 (2019) |
[37] | ZHANG, L. G., LU, Z. Z., CHENG, L., and FAN, C. Q.A new method for evaluating Borgonovo moment-independent importance measure with its application in an aircraft structure. Reliability Engineering & System Safety, 132, 163–175 (2014) |
[38] | SMESTADA, E., MOXNESB, J. F., and DEGARDSTUENA, G.Modelling of deflagration, establishing material data into Ansys Autodyn's powder burn model. International annual conference of Fraunhofer Institut Chemische Technologie, Karlsruhe, Germany, 26–29 (2011) |
[39] | YIN, X. W., VERBERNE, P., and MEGUID, S. A.Multiphysics modelling of the coupled behaviour of precision-guided projectiles subjected to intense shock loads. International Journal of Mechanics and Materials in Design, 10(4), 439–450 (2014) |
[40] | VERBERNE, P. and MEGUID, S. A.Dynamics of precision guided projectile launch: solid-solid interaction. International Journal of Structural Stability and Dynamics, 20(14), 2043001 (2020) |
[41] | ZHANG, L., HAN, J. G., GUO, Y., and HE, C. W.Anand model and FEM analysis of SnAgCuZn lead-free solder joints in wafer level chip scale packaging devices. Microelectronics Reliability, 54(1), 281–286 (2014) |
[42] | ZHOU, T. F., ZHOU, Q., XIE, J. Q., LIU, X. H., WANG, X. B., and RUAN, H. H.Elastic-viscoplasticity modeling of the thermo-mechanical behavior of chalcogenide glass for aspheric lens molding. International Journal of Applied Glass Science, 9(2), 252–262 (2018) |
[43] | SHU, C. S., YIN, S. H., LI, Y. Q., MAO, Z. Z., GUO, X. P., and HUANG, S.High-precision molding simulation prediction of glass lens profile for a new lanthanide optical glass. Ceramics International, 48(11), 15800–15810 (2022) |
[44] | PENG, X. F., HAN, L., and LI, L. X.A consistently compressible Mooney-Rivlin model for the vulcanized rubber based on the Penn's experimental data. Polymer Engineering and Science, 61(9), 2287–2294 (2021) |
[1] | Yiqiang CHEN, Wenjuan YAO, Shaofeng LIU. Numerical simulation of Corti stimulated by fluid in tunnel of Corti[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(5): 737-748. |
[2] | 刘小会 严波 张宏雁 周松. Nonlinear numerical simulation method for galloping of iced conductor[J]. Applied Mathematics and Mechanics (English Edition), 2009, 30(4): 489-501. |
[3] | 何晓婷;陈山林. BIPARAMETRIC PERTURBATION SOLUTIONS OF LARGE DEFLECTION PROBLEM OF CANTILEVER BEAMS[J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(4): 453-460 . |
[4] | 郭茂林;孟庆元;王彪. RESEARCH FOR THE STRAIN ENERGY RELEASE RATE OF COMPLEX CRACKS BY USING POINT-BY-POINT CLOSED EXTRAPOLATION APPROACH[J]. Applied Mathematics and Mechanics (English Edition), 2003, 24(4): 421-426. |
[5] | 王登刚;刘迎曦;李守巨. CHAOS-REGULARIZATION HYBRID ALGORITHM FOR NONLINEAR TWO-DIMENSIONAL INVERSE HEAT CONDUCTION PROBLEM[J]. Applied Mathematics and Mechanics (English Edition), 2002, 23(8): 973-980. |
[6] | 钱伟长. SECOND ORDER APPROXIMATION SOLUTION OF NONLINEAR LARGE DEFLECTION PROBLEMS OF YONGJIANG RAILWAY BRIDGE IN NINGBO[J]. Applied Mathematics and Mechanics (English Edition), 2002, 23(5): 493-506. |
[7] | 尹邦信. ITERATIVE METHOD FOR LARGE DEFLECTION NONLINEAR PROBLEM OF LAMINATED COMPOSITE SHALLOW SHELLS AND PLATES[J]. Applied Mathematics and Mechanics (English Edition), 1999, 20(7): 773-780. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||