[1] Ruggero, M. A. and Rich, N. C. Furosemide alters organ of Corti mechanics:evidence for feedback of outer hair cells upon the basilar membrane. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 11, 1057-1067(1991)
[2] Holley, M. C. and Ashmore, J. F. A cytoskeletal spring in cochlear outer hair cells. nature, 335(6191), 635-637(1988)
[3] Tolomeo, J. A., Steele, C. R., and Holley, M. C. Mechanical properties of the lateral cortex of mammalian auditory outer hair cells. Biophysical Journal, 71(1), 421-429(1996)
[4] Chan, E., Suneson, A., and Ulfendahl, M. Acoustic trauma causes reversible stiffness changes in auditory sensory cells. Neuroscience, 83(3), 961-968(1998)
[5] Hallworth, R. Passive compliance and active force generation in the guinea pig outer hair cell. Journal of Neurophysiology, 74(6), 2319-2328(1995)
[6] Zwislocki, J. J. and Cefaratti, L. K. Tectorial membrane Ⅱ:stiffness measurements in vivo. Hearing Research, 42(2/3), 211-227(1989)
[7] Cormack, J., Liu, Y., Nam, J. H., and Gracewski, S. M. Effect of basilar and tectorial membrane properties and gradients on cochlear response. Journal of the Acoustical Society of America, 135(4), 2166(2014)
[8] Cormack, J., Liu, Y., Nam, J. H., and Gracewski, S. M. Two-compartment passive frequency domain cochlea model allowing independent fluid coupling to the tectorial and basilar membranes. Journal of the Acoustical Society of America, 137(3), 1117-1125(2015)
[9] Morioka, I., Reuter, G., Reiss, P., Gummer, A. W., Hemmert, W., and Zenner, H. P. Soundinduced displacement responses in the plane of the organ of Corti in the isolated guinea-pig cochlea. Hearing Research, 83(1/2), 142-150(1995)
[10] Fridberger, A., Maarseveen, J., Scarfone, E., Ulfendahl, M., Flock, B., and Flock, A. Pressureinduced basilar membrane position shifts and the stimulus-evoked potentials in the low-frequency region of the guinea pig cochlea. Acta Physiologica, 161(2), 239-252(1997)
[11] Khanna, S. M., Flock, A., and Ulfendahl, M. Comparison of the tuning of outer hair cells and the basilar membrane in the isolated cochlea. Acta Oto-Laryngologica Supplementum, 467, 151-156(1989)
[12] Khanna, S. M., Flock, A., and Ulfendahl, M. Changes in cellular tuning along the radial axis of the cochlea. Acta Oto-Laryngologica Supplementum, 467, 163-173(1989)
[13] Khanna, S. M., Ulfendahl, M., and Flock, A. Mechanical tuning characteristics of outer hair cells and Hensen's cells. Acta Oto-Laryngologica Supplementum, 467, 139-144(1989)
[14] Khanna, S. M., Ulfendahl, M., and Flock, A. Changes in cellular tuning along the length of the cochlea. Acta Oto-Laryngologica Supplementum, 467, 157-162(1989)
[15] Khanna, S. M., Ulfendahl, M., and Flock, A. Changes in tuning of Reissner's membrane along the radial axis of the cochlea. Acta Oto-Laryngologica Supplementum, 467, 175-181(1989)
[16] Khanna, S. M., Ulfendahl, M., and Flock, A. Modes of cellular vibration in the organ of Corti. Acta Oto-Laryngologica Supplementum, 467, 183-188(1989)
[17] Khanna, S. M., Ulfendahl, M., and Flock, A. Dependence of cellular responses on signal level. Acta Oto-Laryngologica Supplementum, 467, 195-203(1989)
[18] Mountain, D. C. and Hubbard, A. E. Auditory Mechanisms:Processes and Models, World Scientific, Singapore (2006)
[19] Zagadou, B. F. and Mountain, D. C. Can outer hair cells actively pump fluid into the tunnel of Corti? Aip Conference Proceedings, 1403(50), 76-83(2011)
[20] Boer, E. D. Mechanics of the cochlea:modeling efforts. The Cochlea (eds. Dallos, P. A., Popper, N., and Fay, R. R.), Springer-Verlag, New York, 258-317(1996)
[21] Geisler, C. D. and Sang, C. A cochlear model using feed-forward outer-hair-cell forces. Hearing Research, 86(1/2), 132-146(1995)
[22] Steele, C. R., Baker, G., Tolomeo, J., and Zetes, D. Electro-mechanical models of the outer hair cell. Biophysics of Hair Cell Sensory Systems (eds. Duifhuis, H., Horst, J. W., Dijk, P. V., and Netten, S. M.), World Scientific, Singapore, 207-214(1993)
[23] Hubbard, A. A traveling-wave amplifier model of the cochlea. Science, 259, 68-71(1993)
[24] Hubbard, A. E., Gonzales, D., and Mountain, D. C. A nonlinear traveling-wave amplifier model of the cochlea. Biophysics of Hair Cell Sensory Systems (eds. Duifhuis, H., Horst, J. W., Dijk, P. V., and Netten, S. M.), World Scientific, Singapore, 370-376(1993)
[25] De Boer, E. Flockwave-propagation modes and boundary conditions for the Ulfendahl-Flock khanna preparation. The Mechanics and Biophysics of Hearing (eds. Dallos, P., Geisler, C. D., Matthews, J. W., Ruggero, M. A., and Steele, C. R.), Springer, Berlin, 333-339(1990)
[26] Hubbard, A. E., Yang, Z., Shatz, L., and Mountain, D. C. Multimode cochlear models. Recent Developments in Auditory Mechanics (eds. Wada, H., Takasaka, T., Ikeda, K., Ohyama, K., and Koike, T.), World Scientific, Singapore, 167-173(2000)
[27] Karavitaki, K. D. and Mountain, D. C. Evidence for outer hair cell driven oscillatory fluid flow in the tunnel of Corti. Biophysical Journal, 92(9), 3284-3293(2007)
[28] Andoh, M. and Wada, H. Prediction of the characteristics of two types of pressure waves in the cochlea:theoretical considerations. The Journal of the Acoustical Society of America, 116(1), 417-425(2004)
[29] Edge, R. M., Evans, B. N., Pearce, M., Richter, C. P., Hu, X., and Dallos, P. Morphology of the unfixed cochlea. Hearing Research, 124(1/2), 1-16(1998)
[30] Ren, T. Longitudinal pattern of basilar membrane vibration in the sensitive cochlea. Proceedings of the National Academy of Sciences, 99(26), 17101-17106(2002)
[31] Steele, C. R., Baker, G., Tolomeo, J., and Zetes, D. Cochlear mechanics. The Biomedical Engineering Handbook (ed. Bronzino, J. D.), CRC Press, Boca Raton, 1-12(2000)
[32] Ulfendahl, M., Chan, E., Mcconnaughey, W. B., Prost-Domasky, S., and Elson, E. L. Axial and transverse stiffness measures of cochlear outer hair cells suggest a common mechanical basis. Pflügers Archiv, 436(1), 9-15(1998)
[33] Laffon, E. and Angelini, E. On the Deiters cell contribution to the micromechanics of the organ of Corti. Hearing Research, 99(1/2), 106-109(1996)
[34] Tolomeo, J. A. and Holley, M. C. Mechanics of microtubule bundles in pillar cells from the inner ear. Biophysical Journal, 73(4), 2241-2247(1997)
[35] Zetes, D. E. and Steele, C. R. Fluid-structure interaction of the stereocilia bundle in relation to mechanotransduction. Journal of the Acoustical Society of America, 101(6), 3593-3601(1997)
[36] Naidu, R. C. and Mountain, D. C. Measurements of the stiffness map challenge a basic tenet of cochlear theories. Hearing Research, 124(1/2), 124-131(1998)
[37] Wang, Z. L., Wang, X. L., Hu, Y. J., Shi, H., and Cheng, H. M. FEM simulation of sound transmission based on integrated model of middle ear and cochlea. Chinese Journal of Biomedical Engineering, 30(1), 60-66(2011)
[38] Liberman, M. C. The cochlear frequency map for the cat:labeling auditory-nerve fibers of known characteristic frequency. Journal of the Acoustical Society of America, 72(5), 1441-1449(1982)
[39] Müller, M. The cochlear place-frequency map of the adult and developing Mongolian gerbil. Hearing Research, 94(1/2), 148-156(1996) |