Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (7): 1273-1294.doi: https://doi.org/10.1007/s10483-025-3268-7
收稿日期:
2025-01-09
修回日期:
2025-05-05
发布日期:
2025-06-30
Haidong LIN1,2, Yiqi MAO1,2,†(), Shujuan HOU1,2
Received:
2025-01-09
Revised:
2025-05-05
Published:
2025-06-30
Contact:
Yiqi MAO
E-mail:myq_1984@hnu.edu.cn
Supported by:
中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(7): 1273-1294.
Haidong LIN, Yiqi MAO, Shujuan HOU. Homogenization-based numerical framework of second-phase reinforced alloys integrating strain gradient effects[J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(7): 1273-1294.
"
Shear modulus of matrix | Poisson's ratio of matrix, | Shear modulus of SiC |
26 GPa | 0.33 | 180 GPa |
Poisson's ratio of SiC | Taylor factor, | Magnitude of Burgers vector, |
0.25 | 3.06 | 0.286 |
Hall-Petch constant, | Empirical constant, | Geometric factor, |
120 | 0.33 | 0.15 |
Proportionality factor, | Effective radius of GND, | Reference strain rate, |
0.025 | 0.8 | 0.001 s-1 |
[1] | LI, L. and LIU, G. Study on a straight dislocation in an icosahedral quasicrystal with piezoelectric effects. Applied Mathematics and Mechanics (English Edition), 39(9), 1259–1266 (2018) https://doi.org/10.1007/s10483-018-2363-9 |
[2] | LIN, H., MAO, Y., LIU, W., and HOU, S. Concurrent cross-scale and multi-material optimization considering interface strain gradient. Computer Methods in Applied Mechanics and Engineering, 421, 116749 (2024) |
[3] | LIU, J., ZHANG, Y., and CHU, H. Modeling core-spreading of interface dislocation and its elastic response in anisotropic bimaterial. Applied Mathematics and Mechanics (English Edition), 38(2), 231–242 (2017) https://doi.org/10.1007/s10483-017-2163-9 |
[4] | ZHOU, J. H., WANG, J., RITCHIE, R. O., WU, Y. C., CHENG, J. W., WANG, L., YIN, X. W., JIANG, Y. F., and REN, J. G. Ductile ultrastrong China low activation martensitic steel with lamellar grain structure. International Journal of Plasticity, 171, 103813 (2023) |
[5] | LUO, G., LI, L., FANG, Q., LI, J., TIAN, Y., LIU, Y., LIU, B., PENG, J., and LIAW, P. K. Microstructural evolution and mechanical properties of FeCoCrNiCu high entropy alloys: a microstructure-based constitutive model and a molecular dynamics simulation study. Applied Mathematics and Mechanics (English Edition), 42(8), 1109–1122 (2021) https://doi.org/10.1007/s10483-021-2756-9 |
[6] | LIN, H. and HOU, S. Cross-scale optimization of advanced materials for micro and nano structures based on strain gradient theory. Computer Methods in Applied Mechanics and Engineering, 411, 116010 (2023) |
[7] | WEI, Y. Particulate size effects in the particle-reinforced metal-matrix composites. Acta Mechanica Sinica, 17(1), 45–58 (2001) |
[8] | ORLOVA, D. and BERINSKII, I. Multiscale analysis of a 3D fibrous collagen tissue. International Journal of Engineering Science, 195, 104003 (2024) |
[9] | EITELBERGER, J. and HOFSTETTER, K. Prediction of transport properties of wood below the fiber saturation point—a multiscale homogenization approach and its experimental validation, part I: thermal conductivity. Composites Science and Technology, 71(2), 134–144 (2011) |
[10] | SHRIMALI, B., LEFÈVRE, V., and LOPEZ-PAMIES, O. A simple explicit homogenization solution for the macroscopic elastic response of isotropic porous elastomers. Journal of the Mechanics and Physics of Solids, 122, 364–380 (2019) |
[11] | LUO, Z., TANG, Q., MA, S., WU, X., FENG, Q., SETCHI, R., LI, K., and ZHAO, M. Effect of aspect ratio on mechanical anisotropy of lattice structures. International Journal of Mechanical Sciences, 270, 109111 (2024) |
[12] | WEI, H., HUANG, X., XIE, W., JIANG, X., ZHAO, G., and ZHANG, W. Multiscale modeling for the impact behavior of 3D angle-interlock woven composites. International Journal of Mechanical Sciences, 276, 109382 (2024) |
[13] | BRASSART, L. and STAINIER, L. Effective transient behaviour of heterogeneous media in diffusion problems with a large contrast in the phase diffusivities. Journal of the Mechanics and Physics of Solids, 124, 366–391 (2019) |
[14] | MAO, Y., WANG, C., WU, Y., and CHEN, H. S. Homogenization-based chemomechanical properties of dissipative heterogeneous composites under transient mass diffusion. International Journal of Solids and Structures, 288, 112623 (2024) |
[15] | LUCCHETTA, A., AUSLENDER, F., BORNERT, M., and KONDO, D. A double incremental variational procedure for elastoplastic composites with combined isotropic and linear kinematic hardening. International Journal of Solids and Structures, 158, 243–267 (2019) |
[16] | JIANG, Y., LI, L., and HU, Y. A physically-based nonlocal strain gradient theory for crosslinked polymers. International Journal of Mechanical Sciences, 245, 108094 (2023) |
[17] | COULAIS, C., KETTENIS, C., and VAN HECKE, M. A characteristic length scale causes anomalous size effects and boundary programmability in mechanical metamaterials. Nature Physics, 14(1), 40–44 (2017) |
[18] | LIU, D. B., HE, Y. M., DUNSTAN, D. J., ZHANG, B., GAN, Z. P., HU, P., and DING, H. M. Toward a further understanding of size effects in the torsion of thin metal wires: an experimental and theoretical assessment. International Journal of Plasticity, 41, 30–52 (2013) |
[19] | FLECK, N. A., MULLER, G. M., ASHBY, M. F., and HUTCHINSON, J. W. Strain gradient plasticity: theory and experiment. Acta Metallurgica et Materialia, 42(2), 475–487 (1994) |
[20] | LIU, D. B., HE, Y. M., TANG, X. T., DING, H. M., HU, P., and CAO, P. Size effects in the torsion of microscale copper wires: experiment and analysis. Scripta Materialia, 66(6), 406–409 (2012) |
[21] | FENG, G. and NIX, W. D. Indentation size effect in MgO. Scripta Materialia, 51(6), 599–603 (2004) |
[22] | ASHBY, M. F. Work hardening of dispersion-hardened crystals. Philosophical Magazine, 14(132), 1157–1178 (1966) |
[23] | TAYLOR, M. B., ZBIB, H. M., and KHALEEL, M. A. Damage and size effect during superplastic deformation. International Journal of Plasticity, 18(3), 415–442 (2002) |
[24] | ZENG, S., WANG, K., WANG, B., and WU, J. Vibration analysis of piezoelectric sandwich nanobeam with flexoelectricity based on nonlocal strain gradient theory. Applied Mathematics and Mechanics (English Edition), 41(6), 859–880 (2020) https://doi.org/10.1007/s10483-020-2620-8 |
[25] | YU, Z. and WEI, Y. Cross-scale indentation scaling relationships of strain gradient plastic solids: influence of inclusions near the indenter tip. Acta Mechanica Sinica, 38(1), 221257 (2022) |
[26] | LAM, D. C. C., YANG, F., CHONG, A. C. M., WANG, J., and TONG, P. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 51(8), 1477–1508 (2003) |
[27] | NGUYEN, T. N., SIEGMUND, T., TOMAR, V., and KRUZIC, J. J. Interaction of rate- and size-effect using a dislocation density based strain gradient viscoplasticity model. Journal of the Mechanics and Physics of Solids, 109, 1–21 (2017) |
[28] | ASHBY, M. F. The deformation of plastically non-homogeneous materials. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 21(170), 399–424 (1970) |
[29] | GUAN, X. R., CHEN, Q., QU, S. J., CAO, G. J., WANG, H., RAN, X. D., FENG, A. H., and CHEN, D. L. High-strain-rate deformation: stress-induced phase transformation and nanostructures in a titanium alloy. International Journal of Plasticity, 169, 103707 (2023) |
[30] | JIANG, K., LI, J., GAN, B., YE, T., CHEN, L., and SUO, T. Dynamically compressive behaviors and plastic mechanisms of a CrCoNi medium entropy alloy at various temperatures. Acta Mechanica Sinica, 38(5), 421550 (2022) |
[31] | SUN, J., ZHAO, W., YAN, P., ZHAI, B., XIA, X., ZHAO, Y., JIAO, L., and WANG, X. Dynamic shear behavior of forged CrMnFeCoNi high entropy alloy using hat-shaped specimens over a wide range of temperatures and strain rates. International Journal of Plasticity, 170, 103761 (2023) |
[32] | NGUYEN, T., FENSIN, S. J., and LUSCHER, D. J. Dynamic crystal plasticity modeling of single crystal tantalum and validation using Taylor cylinder impact tests. International Journal of Plasticity, 139, 102940 (2021) |
[33] | DONG, J. L., LI, F. C., GU, Z. P., JIANG, M. Q., LIU, Y. H., WANG, G. J., and WU, X. Q. Impact resistance and energy dissipation mechanism of nanocrystalline CoCrNi medium entropy alloy nanofilm under supersonic micro-ballistic impact. International Journal of Plasticity, 171, 103801 (2023) |
[34] | WANG, Y. Y., WANG, J. D., LEI, M. Q., and YAO, Y. A crystal plasticity coupled damage constitutive model of high entropy alloys at high temperature. Acta Mechanica Sinica, 38(11), 122116 (2022) |
[35] | ZHU, Z. W., ZHANG, G. H., FENG, C., XIAO, S., and ZHU, T. Dynamic impact constitutive model of 6008 aluminum alloy based on evolution dislocation density. Acta Mechanica Sinica, 39(7), 122419 (2023) |
[36] | JIANG, K., ZHANG, Q., LI, J. G., LI, X., ZHAO, F., HOU, B., and SUO, T. Abnormal hardening and amorphization in an FCC high entropy alloy under extreme uniaxial tension. International Journal of Plasticity, 159, 103463 (2022) |
[37] | ZHANG, G., ZHANG, K. S., and FENG, L. On plastic anisotropy of constitutive model for rate-dependent single crystal. Applied Mathematics and Mechanics (English Edition), 26(1), 121–130 (2005) https://doi.org/10.1007/BF02438373 |
[38] | KOUZNETSOVA, V. G., GEERS, M. G. D., and BREKELMANS, W. A. M. Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Computer methods in Applied Mechanics and Engineering, 193(48-51), 5525–5550 (2004) |
[39] | KOUZNETSOVA, V. G., GEERS, M. G. D., and BREKELMANS, W. A. M. Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. International Journal for Numerical Methods in Engineering, 54(8), 1235–1260 (2002) |
[40] | AYAD, M., KARATHANASOPOULOS, N., REDA, H., GANGHOFFER, J. F., and LAKISS, H. On the role of second gradient constitutive parameters in the static and dynamic analysis of heterogeneous media with micro-inertia effects. International Journal of Solids and Structures, 190, 58–75 (2020) |
[41] | AUFFRAY, N., BOUCHET, R., and BRÉCHET, Y. Strain gradient elastic homogenization of bidimensional cellular media. International Journal of Solids and Structures, 47(13), 1698–1710 (2010) |
[42] | KACZMARCZYK, Ł., PEARCE, C. J., and BIĆANIĆ, N. Scale transition and enforcement of RVE boundary conditions in second-order computational homogenization. International Journal for Numerical Methods in Engineering, 74(3), 506–522 (2008) |
[43] | LI, J., ROMERO, I., and SEGURADO, J. Development of a thermo-mechanically coupled crystal plasticity modeling framework: application to polycrystalline homogenization. International Journal of Plasticity, 119, 313–330 (2019) |
[44] | CHEN, Y. P. and CAI, Y. Y. Simulation of plastic deformation induced texture evolution using the crystallographic homogenization finite element method. Acta Mechanica Solida Sinica, 30(1), 51–63 (2017) |
[45] | DURAND, B., LEBÉ, A., SEPPECHER, P., and SAB, K. Predictive strain-gradient homogenization of a pantographic material with compliant junctions. Journal of the Mechanics and Physics of Solids, 160, 104773 (2022) |
[46] | SHI, L., LI, J., LIU, P., ZHU, Y., and KANG, Z. A multi-step relay implementation of the successive iteration of analysis and design method for large-scale natural frequency-related topology optimization. Computational Mechanics, 73(2), 403–418 (2024) |
[47] | YAN, J., HU, W., and DUAN, Z. Structure/material concurrent optimization of lattice materials based on extended multiscale finite element method. International Journal for Multiscale Computational Engineering, 13(1), 73–90 (2015) |
[48] | ZHU, Y., LUO, J., GUO, X., XIANG, Y., and CHAPMAN, S. J. Role of grain boundaries under long-time radiation. Physical Review Letters, 120(22), 222501 (2018) |
[49] | CHENG, G. D., CAI, Y. W., and XU, L. Novel implementation of homogenization method to predict effective properties of periodic materials. Acta Mechanica Sinica, 29(4), 550–556 (2013) |
[50] | GEERS, M. G. D., KOUZNETSOVA, V. G., and BREKELMANS, W. A. M. Multi-scale computational homogenization: trends and challenges. Journal of Computational and Applied Mathematics, 234(7), 2175–2182 (2010) |
[51] | KOCKS, U. F. and MECKING, H. Physics and phenomenology of strain hardening: the FCC case. Progress in Materials Science, 48(3), 171–273 (2003) |
[52] | ZHAO, J., LU, X., YUAN, F., KAN, Q., QU, S., KANG, G., and ZHANG, X. Multiple mechanism based constitutive modeling of gradient nanograined material. International Journal of Plasticity, 125, 314–330 (2020) |
[53] | LI, L., PENG, J., TANG, S., FANG, Q., and WEI, Y. Micromechanism of strength and damage trade-off in second-phase reinforced alloy by strain gradient plasticity theory. International Journal of Plasticity, 176, 103970 (2024) |
[54] | HARIHARAN, K. and BARLAT, F. Modified Kocks-Mecking-Estrin model to account nonlinear strain hardening. Metallurgical and Materials Transactions A, 50, 513–517 (2019) |
[55] | GAO, P. F., FEI, M. Y., ZHAN, M., and FU, M. W. Microstructure- and damage-nucleation-based crystal plasticity finite element modeling for the nucleation of multi-type voids during plastic deformation of Al alloys. International Journal of Plasticity, 165, 103609 (2023) |
[56] | ZENKOUR, A. M. and ABBAS, I. A. Nonlinear transient thermal stress analysis of temperature-dependent hollow cylinders using a finite element model. International Journal of Structural Stability and Dynamics, 14(7), 1450025 (2014) |
[57] | AGORAS, M., AVAZMOHAMMADI, R., and PONTE CASTAÑEDA, P. Incremental variational procedure for elasto-viscoplastic composites and application to polymer- and metal-matrix composites reinforced by spheroidal elastic particles. International Journal of Solids and Structures, 97, 668–686 (2016) |
[58] | MIEHE, C., MAUTHE, S., and TEICHTMEISTER, S. Minimization principles for the coupled problem of Darcy-Biot-type fluid transport in porous media linked to phase field modeling of fracture. Journal of the Mechanics and Physics of Solids, 82, 186–217 (2015) |
[59] | MIEHE, C. Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. International Journal for Numerical Methods in Engineering, 55(11), 1285–1322 (2002) |
[60] | ANAHID, M., SAMAL, M. K., and GHOSH, S. Dwell fatigue crack nucleation model based on crystal plasticity finite element simulations of polycrystalline titanium alloys. Journal of the Mechanics and Physics of Solids, 59(10), 2157–2176 (2011) |
[61] | JIANG, J., YANG, J., ZHANG, T., ZOU, J., WANG, Y., DUNNE, F. P. E., and BRITTON, T. B. Microstructurally sensitive crack nucleation around inclusions in powder metallurgy nickel-based superalloys. Acta Materialia, 117, 333–344 (2016) |
[62] | ZHAN, J., YAO, X., HAN, F., and ZHANG, X. A rate-dependent peridynamic model for predicting the dynamic response of particle reinforced metal matrix composites. Composite Structures, 263, 113673 (2021) |
[63] | LIU, J. L., HUANG, X. Y., ZHAO, K., ZHU, Z. W., ZHU, X. X., and AN, L. N. Effect of reinforcement particle size on quasistatic and dynamic mechanical properties of Al-Al2O3 composites. Journal of Alloys and Compounds, 797, 1367–1371 (2019) |
[64] | JIA, B., RUSINEK, A., XIAO, X., and WOOD, P. Simple shear behavior of 2024-T351 aluminum alloy over a wide range of strain rates and temperatures: experiments and constitutive modeling. International Journal of Impact Engineering, 156, 103972 (2021) |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||