[1] |
HETNARSKI, R. B. and IGNACZAK, J. Generalized thermoelasticity. Journal of Thermal Stresses, 22, 451–470 (1999)
|
[2] |
HETNARSKI, R. B. and IGNACZAK, J. Nonclassical dynamical thermoelasticity. International Journal of Solids and Structures, 37(1-2), 215–224 (2000)
|
[3] |
SOKOLNIKOFF, R. M. and REDHEFFER, I. S. Mathematics of Physics and Modern Engineering, Vol. 194, McGraw-Hill College, New York/Toronto/London (1966)
|
[4] |
FOREST, S. and AMESTOY, M. Hypertemperature in thermoelastic solids. Comptes Rendues Mathématiques, 336, 347 (2008)
|
[5] |
LORD, H. W. and SHULMAN, Y. A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids, 15(5), 299–309 (1967)
|
[6] |
GREEN, A. E. and LIDSAY, K. A. Thermoelasticity. Journal of Elasticity, 2, 1–7 (1972)
|
[7] |
GREEN, A. G. and NAGHDI, P. M. A unified procedure for construction of theories of deformable media. I. classical continuum physics. Proceedings of the Royal Society of London A, 448, 335–356 (1995)
|
[8] |
GREEN, A. G. and NAGHDI, P. M. A unified procedure for construction of theories of deformable media, II. generalized continua. Proceedings of the Royal Society of London A, 448, 357–377 (1995)
|
[9] |
GREEN, A. G. and NAGHDI, P. M. A unified procedure for construction of theories of deformable media, III. mixtures of interacting continua. Proceedings of the Royal Society of London A, 448, 379–388 (1995)
|
[10] |
QUINTANILLA, R. Moore-Gibson-Thompson thermoelasticity. Mathematics and Mechanics of Solids, 24, 4020–4031 (2019)
|
[11] |
IGNACZAK, J. and OSTOJA-STARZEWSKI, M. Thermoelasticity with Finite Wave Speeds, Oxford Mathematical Monographs, Oxford (2010)
|
[12] |
STRAUGHAN, B. Heat Waves, Applied Mathematical Sciences, Vol. 177, Springer-Verlag, Berlin (2011)
|
[13] |
FABRIZIO, M., FRANCHI, F., and NIBBI, R. Second gradient Green-Nagdhi type thermo-elasticity and viscoelasticity. Mechanics Research Communications, 126, 104014 (2022)
|
[14] |
IEŞAN, D. Thermal stresses that depend on temperature gradients. Zeitschrift für angewandte Mathematik und Physik, 74, 138 (2023)
|
[15] |
IEŞAN, D. Second gradient theory of thermopiezoelectricity. Acta Mechanica, 235, 5379–5391 (2024)
|
[16] |
IEŞAN, D., MAGAÑA, A., and QUINTANILLA, R. A second gradient theory of thermoviscoelasticity. Journal of Thermal Stresses, 47, 1145–1158 (2024)
|
[17] |
IEŞAN, D. and QUINTANILLA, R. A second gradient theory of thermoelasticity. Journal of Elasticity, 154, 629–643 (2023)
|
[18] |
IEŞAN, D. and QUINTANILLA, R. Second gradient thermoelasticity with microtemperatures. Electronic Research Archive, 33, 537–555 (2025)
|
[19] |
BAZARRA, N., FERNÁNDEZ, J. R., PATA, V., and QUINTANILLA, R. Analysis of two thermoelastic problems within the second gradient theory. Journal of Thermal Stresses (2025) https://doi.org/10.1080/01495739.2025.2485472
|
[20] |
BORICHEV, A. and TOMILOV, Y. Optimal polynomial decay of function semigroups. Mathemastichen Annalen, 347, 455–478 (2009)
|
[21] |
DELL'ORO, F. and PATA, V. Second order linear evolution equations with general dissipation. Applied Mathematics and Optimization, 83, 1877–1917 (2021)
|
[22] |
DAFERMOS, C. M. Contraction semigroups and trend to equilibrium in continuum mechanics. Lecture Notes in Mathematics, Vol. 503, Springer, Berlin, 295–306 (1976)
|
[23] |
BERENSTEIN, C. A. An inverse spectral theorem and its relation to the Pompeiu problem. Journal d'Analyse Mathématique, 37, 128–144 (1980)
|
[24] |
HORGAN, C. O. and WHLEER, L. T. Spatial decay estimates for the Navier-Stokes equations with application to the problem of entry flow. SIAM Journal on Applied Mathematics, 35, 97–116 (1978)
|
[25] |
VAFEADES, P. and HORGAN, C. O. Exponential decay estimates for solutions of the von Kármán equations on a semi-infinite strip. Archive for Rational Mechanics and Analysis, 104, 1–25 (1988)
|