Please wait a minute...


当期目录

    2013年 第34卷 第2期    刊出日期:2013-02-03
    Transient response of enstrophy transport to opposition control in turbulent channel flow
    葛铭纬 许春晓 黄伟希 崔桂香
    2013, 34(2):  127-138.  doi:10.1007/s10483-013-1658-x
    摘要 ( 808 )   PDF (463KB) ( 699 )  
    参考文献 | 相关文章 | 多维度评价
    The transient response of the turbulent enstrophy transport to opposition control in the turbulent channel flow is studied with the aid of direct numerical simulation. It is found that the streamwise enstrophy and the spanwise enstrophy are suppressed by the attenuation of the stretching terms at first, while the vertical enstrophy is reduced by inhibiting the tilt of the mean shear. In the initial period of the control, the streamwise enstrophy evolves much slower than the other two components. The vertical vorticity component exhibits a rapid monotonic decrease and also plays an important role in the attenuation of the other two components.
    Viscous and Ohmic heating effects in doubly stratified free convective flow over vertical plate with radiation and chemical reaction
    P. GANESAN R. K. SUGANTHI P. LOGANATHAN
    2013, 34(2):  139-152.  doi:10.1007/s10483-013-1659-8
    摘要 ( 824 )   PDF (565KB) ( 711 )  
    参考文献 | 相关文章 | 多维度评价

    An analysis is carried out to study the combined effects of viscous and Ohmic heating in the transient, free convective flow of a viscous, incompressible, and doubly stratified fluid past an isothermal vertical plate with radiation and chemical reactions. The governing boundary layer equations are solved numerically by an implicit finite difference scheme of the Crank-Nicolson type. The influence of different parameters on the velocity, the temperature, the concentration, the skin friction, the Nusselt number, and the Sherwood number is discussed with graphical illustrations. It is observed that an increase in either the thermal stratification or the mass stratification parameter decreases the velocity. An increase in the thermal stratification increases the concentration and decreases the temperature while an opposite effect is observed for an increase in the mass stratification. An augmentation in viscous and Ohmic heating increases the velocity and temperature while decreases the concentration. The results are found to be in good agreement with the existing solutions in literature.

    论文
    Transient flows of Maxwell fluid with slip conditions
    T. HAYAT S.ZAIB S. ASGHAR K. BHATTACHARYYA S. A. SHEHZAD
    2013, 34(2):  153-166.  doi:10.1007/s10483-013-1660-8
    摘要 ( 1053 )   PDF (744KB) ( 965 )  
    参考文献 | 相关文章 | 多维度评价

    Two fundamental flows, namely, the Stokes and Couette flows in a Maxwell fluid are considered. The exact analytic solutions are derived in the presence of the slip condition. The Laplace transform method is employed for the development of such solutions. Limiting cases of no-slip and viscous fluids can be easily recovered from the present analysis. The behaviors of embedded flow parameters are discussed through graphs.

    Stagnation-point flow of couple stress fluid with melting heat transfer
    T. HAYAT M.MUSTAFA Z.IQBAL A.ALSAEDI
    2013, 34(2):  167-176.  doi:10.1007/s10483-013-1661-9
    摘要 ( 931 )   PDF (291KB) ( 1111 )  
    参考文献 | 相关文章 | 多维度评价

    Melting heat transfer in the boundary layer flow of a couple stress fluid over a stretching surface is investigated. The developed differential equations are solved for homotopic solutions. It is observed that the velocity and the boundary layer thickness are decreasing functions of the couple stress fluid parameter. However, the temperature and surface heat transfer increase when the values of the couple stress fluid parameter increase. The velocity and temperature fields increase with an increase in the melting process of the stretching sheet.

    Convective transport of nanoparticles in multi-layer fluid flow
    K. VAJRAVELU K.V.PRASAD S. ABBASBANDY
    2013, 34(2):  177-188.  doi:10.1007/s10483-013-1662-6
    摘要 ( 863 )   PDF (277KB) ( 824 )  
    参考文献 | 相关文章 | 多维度评价
    Technologically, multi-layer fluid models are important in understanding fluid-fluid or fluid-nanoparticle interactions and their effects on flow and heat transfer characteristics. However, to the best of the authors’ knowledge, little attention has been paid to the study of three-layer fluid models with nanofluids. Therefore, a three-layer fluid flow model with nanofluids is formulated in this paper. The governing coupled nonlinear differential equations of the problem are non-dimensionalized by using appropriate fundamental quantities. The resulting multi-point boundary value problem is solved numerically by quasi-linearization and Richardson’s extrapolation with modified boundary conditions. The effects of the model parameters on the flow and heat transfer are obtained and analyzed. The results show that an increase in the nanoparticle concentration in the base fluid can modify the fluid-velocity at the interface of the two fluids and reduce the shear not only at the surface of the clear fluid but also at the interface between them.
    That is, nanofluids play a vital role in modifying the flow phenomena. Therefore, one can use nanofluids to obtain the desired qualities for the multi-fluid flow and heat transfer characteristics.
    Dynamics of stochastic non-Newtonian fluids driven by fractional Brownian motion with Hurst parameter H ∈ (1/4, 1/2)
    李劲 黄建华
    2013, 34(2):  189-208.  doi:10.1007/s10483-013-1663-6
    摘要 ( 1020 )   PDF (265KB) ( 825 )  
    参考文献 | 相关文章 | 多维度评价
    A two-dimensional (2D) stochastic incompressible non-Newtonian fluid driven by the genuine cylindrical fractional Brownian motion (FBM) is studied with the Hurst parameter H ∈ ( 1/4 , 1/2 ) under the Dirichlet boundary condition. The existence and regularity of the stochastic convolution corresponding to the stochastic non-Newtonian fluids are obtained by the estimate on the spectrum of the spatial differential operator and the identity of the infinite double series in the analytic number theory. The existence of the mild solution and the random attractor of a random dynamical system are then obtained for the stochastic non-Newtonian systems with H ∈ ( 1/2 , 1) without any additional restriction on the parameter H.
    Cavitating/non-cavitating flows simulation by third-order finite volume scheme and power-law preconditioning method
    P. AKBARZADEH
    2013, 34(2):  209-228.  doi:10.1007/s10483-013-1664-7
    摘要 ( 899 )   PDF (957KB) ( 823 )  
    参考文献 | 相关文章 | 多维度评价
    Equations of steady inviscid and laminar flows are solved by means of a third-order finite volume (FV) scheme. For this purpose, a cell-centered discretization technique is employed. In this technique, the flow parameters at the cell faces are computed using a third-order weighted averages procedure. A fourth-order artificial dissipation is used for stability of the solution. In order to achieve the steady-state situation, four-step Runge-Kutta explicit time integration method is applied. An advanced progressive preconditioning method, named the power-law preconditioning method, is used for faster convergence. In this method, the preconditioning matrix is adjusted automatically from the velocity and/or pressure flow-field by a power-law relation. Attention is directed towards accuracy and convergence of the schemes. The results presented in the paper focus on steady inviscid and laminar flows around sheet-cavitating and fully-wetted bodies including hydrofoils and circular/elliptical cylinder. Excellent agreements are obtained
    when numerical predictions are compared with other available experimental and numerical results. In addition, it is found that using the power-law preconditioner significantly increases the numerical convergence speed.
    Dynamic behavior of frozen soil under uniaxial strain and stress conditions
    张海东 朱志武 宋顺成 康国政 宁建国
    2013, 34(2):  229-238.  doi:10.1007/s10483-013-1665-x
    摘要 ( 847 )   PDF (782KB) ( 1054 )  
    参考文献 | 相关文章 | 多维度评价

    The split Hopkinson pressure bar (SHPB) method is used to investigate the dynamic behavior of the artificial frozen soil under the nearly uniaxial strain and uniaxial stress conditions. The tests are conducted at the temperatures of −3?C, −8?C, −13?C, −17?C, −23?C, and −28?C and with the strain rates from 900 s−1 to 1 500 s−1. The nearly uniaxial stress-strain curves exhibit an elastic-plastic behavior, whereas the uniaxial stress-strain curves show a brittle behavior. The compressive strength of the frozen soil exhibits the positive strain rate and negative temperature sensitivity, and the final strain of the frozen soil shows the positive strain rate sensitivity. The strength of the frozen soil under the nearly uniaxial strain is greater than that under the uniaxial stress. After the negative confinement tests, the specimens are compressed, and the visible cracks are not observed. However, the specimens are catastrophically damaged after the uniaxial SHPB tests. A phenomenological model with the thermal sensitivity is established to describe the dynamic behavior of the confined frozen soil.

    Contact problem for regular hexagon weakened with full-strength hole
    N. ODISHELIDZE F. CRIADO-ALDEANUEVA J. M. SANCHEZ
    2013, 34(2):  239-248.  doi:10.1007/s10483-013-1666-9
    摘要 ( 760 )   PDF (201KB) ( 519 )  
    参考文献 | 相关文章 | 多维度评价
    A problem of the plane elasticity theory is addressed for a doubly connected body with an external boundary of the regular hexagon shape and with a 6-fold symmetric hole at the center. It is assumed that all the six sides of the hexagon are subjected to uniform normal displacements via smooth rigid stamps, while the uniformly distributed normal stress is applied to the internal hole boundary. Using the methods of complex analysis, the analytical image of Kolosov-Muskhelishvili’s complex potentials and the shape of the hole contour are determined from the condition that the circumferential normal stress is constant along the hole contour. Numerical results are given and shown in relevant graphs.
    Propagation of Love waves in non-homogeneous substratum over initially stressed heterogeneous half-space
    S. GUPTA;D. K. MAJHI;S. KUNDU;S. K. VISHWAKARMA
    2013, 34(2):  249-258.  doi:10.1007/s10483-013-1667-7
    摘要 ( 921 )   PDF (305KB) ( 1117 )  
    参考文献 | 相关文章 | 多维度评价

    The paper studies the propagation of Love waves in a non-homogeneous substratum over an initially stressed heterogeneous half-space. The dispersion equation of phase velocity is derived. The velocities of Love waves are calculated numerically as a function of kH and presented in a number of graphs, where k is the wave number, and H is the thickness of the layer. The case of Gibson’s half-space is also considered. It is observed that the speed of Love waves is finite in the vicinity of the surface of the half-space and vanishes as the depth increases for a particular wave number. It is also observed that an increase in compressive initial stresses causes decreases of Love waves velocity for the same frequency, and the tensile initial stress of small magnitude in the half-space causes increase of the velocity.

[an error occurred while processing this directive]
APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals