[1] Akhtar, N., Rahman, F., and Sen, S. K. Stokes flow due to fundamental singularities before a
plane boundary. Applied Mathematics and Mechanics (English Edition), 25(4), 799–805 (2004)
DOI 10.1007/BF02437572
[2] Happel, J. and Brenner, H. Low Reynolds Number Hydrodynamics, Martinus Nijhoff Publishers,
Dordrecht (1986)
[3] Collins, W. D. Note on a sphere theorem for the axisymmetric Stokes flow of a viscous fluid.
Mathematika, 5, 118–121 (1958)
[4] Aderogba, K. On Stokeslets in a two-fluid space. Journal of Engineering Mathematics, 10(2),
143–151 (1976)
[5] Palaniappan, D., Nigam, S. D., Amaranath, T., and Usha, R. Lamb’s solution of Stokes’s equations:
a sphere theorem. The Quarterly Journal of Mechanics and Applied Mathematics, 45(1),
47–56 (1992)
[6] Padmavathi, B. S., Amaranath, T., and Nigam, S. D. Stokes flow past a sphere with mixed
slip-stick boundary conditions. Fluid Dynamics Research, 11, 229–234 (1993)
[7] Schmitz, R. and Felderhof, B. U. Creeping flow about a sphere. Physica, 92A, 423–437 (1978)
[8] Raja, S. G. P., Tejeswara, R. K., Padmavathi, B. S., and Amaranath, T. Two-dimensional Stokes
flows with slip-stick boundary conditions. Mechanics Research Communications, 22(5), 491–501
(1995)
[9] Palaniappan, D. and Daripa, P. Interior Stokes flows with stick-slip boundary conditions. Physica,
297A, 37–63 (2001)
[10] Palaniappan, D. and Daripa, P. Exterior Stokes flows with stick-slip boundary conditions.
Zeitschrift f ¨ur Angewandte Mathematik und Physik, 53, 281–307 (2002)
[11] Basset, A. B. A Treatise on Hydrodynamics, Dover Publications, New York (1961)
[12] Lamb, H. Hydrodynamics, Dover Publications, New York (1945)
[13] Batchelor, G. K. An Introduction to Fluid Dynamics, Cambridge University Press, London (1967)
[14] Sneddon, I. N. Elements of Partial Differential Equations, McGraw Hill, Singapore (1985)
[15] Stimson, M. and Jeffery, G. B. The motion of two spheres in a viscous fluid. Proceedings of the
Royal Society, A111, 110–116 (1926)
[16] Collins, W. D. A note on Stokes’s stream function for the slow steady motion of viscous fluid
before plane and spherical boundaries. Mathematika, 1, 125–130 (1954)
[17] Spiegel, M. R. Theory and Problems of Advanced Calculus, McGraw Hill, Singapore (1963)
|