[1] Altan, T., Oh, S. I., and Gegel, H. L. Metal Forming: Fundamentals and Applications, American Society for Metals, Metals Park, Ohio, 85 (1983)
[2] Fisher, E. G. Extrusion of Plastics, John Wiley and Son, New York, 14-140 (1976)
[3] Sakiadis, B. C. Boundary layer behavior on continuous solid surfaces. American Institute of Chemical Engineers Journal, 7(1), 26-28 (1961)
[4] Crane, L. J. Flow past a stretching plate. Zeitschrift für Angewandte Mathematik und Physik, 21(4), 645-647 (1970)
[5] Dandapat, B. S. and Singh, S. K. Thin film flow over a heated nonlinear stretching sheet in presence of uniform transverse magnetic field. International Communications in Heat and Mass Transfer, 38, 324-328 (2011)
[6] Labropulu, F., Li, D., and Pop, I. Non-orthogonal stagnation-point flow towards a stretching surface in a non-Newtonian fluid with heat transfer. International Journal of Thermal Sciences, 49, 1042-1050 (2010)
[7] Fang, T. G., Zhang, J., and Yao, S. S. New family of unsteady boundary layers over a stretching surface. Applied Mathematics and Computation, 217(8), 3747-3755 (2010)
[8] Yao, S. S., Fang, T. G., and Zhong, Y. F. Heat transfer of a generalized stretching/shrinking wall problem with convective boundary conditions. Communications in Nonlinear Science and Numerical Simulation, 16, 752-760 (2010)
[9] Nadeem, S. and Hussain, A. MHD flow of a viscous fluid on a nonlinear porous shrinking sheet with homotopy analysis method. Applied Mathematics and Mechanics (English Edition), 30(12), 1569-1578 (2009) DOI 10.1007/s10483-009-1208-6
[10] Ali, F. M., Nazar, R., Arifin, N. M., and Pop, I. MHD stagnation-point flow and heat transfer towards stretching sheet with induced magnetic field. Applied Mathematics and Mechanics (English Edition), 32(4), 409-418 (2011) DOI 10.1007/s10483-011-1426-6
[11] Kechil, S. A. and Hashim, I. Series solution of flow over nonlinearly stretching sheet with chemical reaction and magnetic field. Physics Letters A, 372, 2258-2263 (2008)
[12] Hayat, T., Qasim, M., and Abbas, Z. Homotopy solution for the unsteady three-dimensional MHD flow and mass transfer in a porous space. Communications in Nonlinear Science and Numerical Simulation, 15, 2375-2387 (2010)
[13] Hayat, T. and Qasim, M. Influence of thermal radiation and Joule heating on MHD flow of a Maxwell fluid in the presence of thermophoresis. International Journal of Heat and Mass Transfer, 53, 4780-4788 (2010)
[14] Ishak, A. MHD boundary layer flow due to an exponentially stretching sheet with radiation effect. Sains Malaysiana, 40(4), 391-395 (2011)
[15] Patrick, D. W. and Magyari, E. Generalized Crane flow induced by continuous surfaces stretching with arbitrary velocities. Acta Mechanica, 209, 353-362 (2010)
[16] Bognár, G. Analytic solutions to the boundary layer problem over a stretching wall. Computers and Mathematics with Applications, 61(8), 2256-2261 (2011)
[17] Chen, C. K. and Char, M. I. Heat transfer of a continuous stretching surface with suction and blowing. Journal of Mathematical Analysis and Applications, 135, 568-580 (1988)
[18] Fang, T. and Zhang, J. Note on the heat transfer of flows over a stretching wall in porous media: exact solutions. Transport in Porous Media, 86, 609-614 (2011)
[19] Sparrow, E. M. and Yu, H. S. Local non-similarity thermal boundary layer solution. ASME Journal of Heat Transfer, 93, 328-334 (1971)
[20] Sparrow, E. M., Quack, H., and Boerner, C. J. Local non-similarity boundary layer solution. AIAA Journal, 8, 1936-1942 (1970)
[21] Mahmood, M., Asghar, S., and Hossain, M. A. Squeezed flow and heat transfer over a porous surface for viscous fluid. Heat and Mass Transfer, 44, 165-173 (2007)
[22] Mushtaq, M., Asghar, S., and Hossain, M. A. Mixed convection flow of second grade fluid along a vertical stretching flat surface with variable surface temperature. Heat and Mass Transfer, 43, 1049-1061 (2007) |