[1] Herbert, T. H. Boundary-layer transition-analysis and prediction revisited. AIAA Paper 91-737(1991)
[2] Herbert, T. H. Parabolized stability equation. Annual Review of Fluid Mechanics, 29(1), 245-283(1997)
[3] Bertolotti, F. P. and Herbert, T. H. Analysis of linear stability of compressible boundary layersusing the PSE. Theoretical and Computational Fluid Dynamics, 3(2), 117-124 (1991)
[4] Chang, C. L., Malik, M. R., Erlebacher, G., and Hussaini, M. Y. Compressible stability of growingboundary layer using parabolized stability equations. AIAA Paper 91-1636 (1991)
[5] Bertolotti, F. P., Herbert, T. H., and Spalart, P. R. Linear and nonlinear stability of the Blasiusboundary layer. Journal of Fluid Mechanics, 242(1), 441-474 (1992)
[6] Joslin, R. D., Chang, C. L., and Streett, C. L. Spatial direct numerical simulation of boundary-layer transition mechanisms: validation of PSE theory. Theoretical and Computational Fluid Dynamics, 4(6), 271-288 (1993)
[7] Esfanhanian, V., Hejranfar, K., and Sabetghadam, F. Linear and nonlinear PSE for stabilityanalysis of the Blasius boundary layer using compact scheme. Journal of Fluids Engineering,123(3), 545-550 (2001)
[8] Zhang, Y. M. and Zhou, H. Verification of the parabolized stability equations for its applicationto compressible boundary layers. Applied Mathematics and Mechanics (English Edition), 28(8),987-998 (2007) DOI 10.1007/s10483-007-0801-3
[9] Malik, M. R., Chuang, S., and Hussaini, M. Y. Accurate numerical solution of compressible, linearstability equation. Journal of Applied Mathematics and Physics (ZAMP), 33(2), 189-201 (1982) |