[1] Wiggins, S. Global Bifurcations and Chaos: Analytical Methods, Springer-Verlag, New York (1988)
[2] Kovacic, G. and Wiggins, S. Orbits homoclinic to resonances with an application to chaos in amodel of the forced and damped sine-Gordon equation. Physica D, 57(1-2), 185-225 (1992)
[3] Kaper, T. J. and Kovacic, G. Multi-bump orbits homoclinic to resonance bands. Transactions ofthe American Mathematical Society, 348(10), 3835-3887 (1996)
[4] Camassa, R., Kovacic, G., and Tin, S. K. A Melnikov method for homoclinic orbits with manypulses. Archive for Rational Mechanics and Analysis, 143(2), 105-193 (1998)
[5] Haller, G. and Wiggins, S. Multi-pulse jumping orbits and homoclinic trees in a modal truncationof the damped-forced nonlinear Schrödinger equation. Physica D, 85(3), 311-347 (1995)
[6] Haller, G. Chaos Near Resonance, Springer-Verlag, New York (1999)
[7] Hadian, J. and Nayfeh, A. H. Modal interaction in circular plates. Journal of Sound and Vibration,142(2), 279-292 (1990)
[8] Yang, X. L. and Sethna, P. R. Local and global bifurcations in parametrically excited vibrationsnearly square plates. International Journal of Non-Linear Mechanics, 26(2), 199-220 (1991)
[9] Yang, X. L. and Sethna, P. R. Non-linear phenomena in forced vibrations of a nearly square plate:antisymmetric case. Journal of Sound and Vibration, 155(3), 413-441 (1992)
[10] Feng, Z. C. and Sethna, P. R. Global bifurcations in the motion of parametrically excited thinplate. Nonliner Dynamics, 4(4), 389-408 (1993)
[11] Chang, S. I., Bajaj, A. K., and Krousgrill, C. M. Nonlinear vibrations and chaos in harmonicallyexcited rectangular plates with one-to-one internal resonance. Nonlinear Dynamics, 4(5), 433-460(1993)
[12] Abe, A., Kobayashi, Y., and Yamada, G. Two-mode response of simply supported, rectangularlaminated plates. International Journal of Non-Linear Mechanics, 33(4), 675-690 (1998)
[13] Zhang, W., Liu, Z. M., and Yu, P. Global dynamics of a parametrically and externally excitedthin plate. Nonlinear Dynamics, 24(3), 245-268 (2001)
[14] Zhang, W. Global and chaotic dynamics for a parametrically excited thin plate. Journal of Soundand Vibration, 239(5), 1013-1036 (2001)
[15] Anlas, G. and Elbeyli, O. Nonlinear vibrations of a simply supported rectangular metallic platesubjected to transverse harmonic excitation in the presence of a one-to-one internal resonance.Nonlinear Dynamics, 30(1), 1-28 (2002)
[16] Zhang, W., Song, C. Z., and Ye, M. Further studies on nonlinear oscillations and chaos of asymmetric cross-ply laminated thin plate under parametric excitation. International Journal ofBifurcation and Chaos, 16(2), 325-347 (2006)
[17] Zhang, W., Yang, J., and Hao, Y. X. Chaotic vibrations of an orthotropic FGM rectangular platebased on third-order shear deformation theory. Nonlinear Dynamics, 59(4), 619-660 (2010)
[18] Yu, W. Q. and Chen, F. Q. Global bifurcations of a simply supported rectangular metallic platesubjected to a transverse harmonic excitation. Nonlinear Dynamics, 59(1-2), 129-141 (2010)
[19] Li, S. B., Zhang, W., and Hao, Y. X. Multi-pulse chaotic dynamics of a functionally gradedmaterial rectangular plate with one-to-one internal resonance. International Journal of NonlinearSciences and Numerical Simulation, 11(5), 351-362 (2010)
[20] Zhang, W. and Li, S. B. Resonant chaotic motions of a buckled rectangular thin plate withparametrically and externally excitations. Nonlinear Dynamics, 62(3), 673-686 (2010)
[21] Chia, C. Y. Nonlinear Analysis of Plate, McMraw-Hill, California (1980)
[22] Timoshenko, S. and Woinowsky-Krieger, S. Theory of Plates and Shells, McGraw-Hill, New York(1959)
[23] Nayfeh, A. H. and Mook, D. T. Nonlinear Oscillations, Wiley, New York (1979) |