[1] Taylor, G. I. Stability of a viscous liquid contained between two rotating cylinders. PhilosophicalTransactions of the Royal Society of London, Series A, 223, 289-343 (1923)
[2] Tagg, R. The Couette-Taylor problem. Nonlinear Science Today, 4, 2-25 (1994)
[3] Gyr, A. and Bewersdorff, H. W. Drag Reduction of Turbulent Flows by Additives, Fluid Mechanicsand Its Applications, Vol. 32, Kluwer Academic, New York (1995)
[4] Brenner, M. and Stone, H. Modern classical physics through the work of G. I. Taylor. PhysicsToday, 5, 30-35 (2000)
[5] Hoffmann, C., Altmeyer, S., Pinter, A., and Lücke, M. Transitions between Taylor vortices andspirals via wavy Taylor vortices and wavy spirals. New Journal of Physics, 11, 1-24 (2009) DOI10.1088/1367-2630/11/5/053002
[6] Kuhlmann, H. Model for Taylor-Couette flow. Phys. Rev. A, 32(3), 1703-1707 (1985)
[7] Berger, H. R. Mode analysis of Taylor-Couette flow in finite gaps. Z. Angew. Math. Mech., 79(2),91-96 (1999) DOI 10.1002/(SICI)1521-4001(199902)
[8] Li, Z. and Khayat, R. A nonlinear dynamical system approach to finite amplitude Taylor-vortexflow of shear-thinning fluids. Int. J. Numer. Meth. Fluids, 45, 321-340 (2004) DOI 10.1002/fld.703
[9] Ashrafi, N. Stability analysis of shear-thinning flow between rotating cylinders. Applied MathematicalModelling, 35, 4407-4423 (2011) DOI 10.1016/j.apm.2011.03.010
[10] Khayat, R. Low-dimensional approach to nonlinear overstability of purely elastic Taylor-vortexflow. Physical Review Letters, 78(26), 4918-4921 (1997)
[11] Khayat, R. Finite-amplitude Taylor-vortex flow of viscoelastic fluids. Journal of Fluid Mechanics,400, 33-58 (1999)
[12] Muller, S. J., Shaqfeh, E. S. G., and Larson, R. G. Experimental study of the onset of oscillatoryinstability in viscoelastic Taylor-Couette flow. Journal of Non-Newtonian Fluid Mechanics, 46,315-330 (1993)
[13] Larson, R. G. Instabilities in viscoelastic flows. Rheol. Acta, 31, 213-263 (1992)
[14] Larson, R. G., Shaqfeh, E. S. G., and Muller, S. J. A purely elastic instability in Taylor-Couetteflow. Journal of Fluid Mechanics, 218, 573-600 (1990)
[15] Dusting, J. and Balbani, S. Mixing in a Taylor-Couette reactor in the non-wavy regime. Chem.Eng. Sci., 64, 3103-3111 (2009)
[16] Yorke, J. A. and Yorke, E. D. Hydrodynamic Instabilities and the Transition to Turbulence (eds.Swinney, H. L. and Gollub, J. P.), Springer-Verlag, Berlin (1981)
[17] Yahata, H. Temporal development of the Taylor vortices in a rotating field, 1. Prog. Theor. Phys.,Supplement, 64, 176-185 (1978)
[18] Bird, R. B., Armstrong, R. C., and Hassager, O. Dynamics of Polymeric Liquids, 2nd ed., Vol. 1,Wiley, New York (1987)
[19] Coronado-Matutti, O., Souza-Mendes, P. R., and Carvalho, M. S. Instability of inelastic shearthinningliquids in a Couette flow between concentric cylinders. J. Fluids Eng., 126, 385-390(2004) DOI 10.1115/1.1760537
[20] Crumeryrolle, O., Mutabazi, I., and Grisel, M. Experimental study of inertioelastic Couette-Taylor instability modes in dilute and semidilute polymer solutions. Physics of Fluids, 14(5),1681-1688 (2002) DOI 10.1063/1.1466837
[21] Ashrafi, N. and Karimi-Haghighi, H. Effect of gap width on stability of non-Newtonian Taylor-Couette flow. Z. Angew. Math. Mech., 92(5), 393-408 (2012)
[22] Strogatz, S. H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistryand Engineering, Addison Wesley Publishing Company, Boston (1994) |