[1] Leone, J. M., Jr. Open boundary condition symposium benchmark solution: stratified flow over abackward-facing step. International Journal for Numerical Methods in Fluids, 11, 969-984 (1990)
[2] Armaly, B. F., Durst, F., Pereira, J. C. F., and Schonung, B. Experimental and theoreticalinvestigation of backward-facing step flow. Journal of Fluid Mechanics, 127, 473-496 (1983)
[3] Le, H., Moin, P., and Kim, J. Direct numerical simulation of turbulent flow over a backward-facingstep. Journal of Fluid Mechanics, 330, 349-374 (1997)
[4] Ramsak, M., Skerget, L., Hribersek, M., and Zunic, Z. A multidomain boundary element methodfor unsteady laminar flow using stream function vorticity equations. Engineering Analysis withBoundary Elements, 29, 1-14 (2005)
[5] Calle, J. L. D., Devloo, P. R. B., and Gomes, S. M. Stabilized discontinuous Galerkin method forhyperbolic equations. Computer Methods in Applied Mechanics and Engineering, 194, 1861-1874(2005)
[6] Creuse, E., Giovannini, A., and Mortazavi, I. Vortex simulation of active control strategies fortransitional backward-facing step flows. Computers and Fluids, 38, 1348-1360 (2009)
[7] Abu-Mulaweh, H. I. A review of research on laminar mixed convection flow over backward- andforward-facing steps. International Journal of Thermal Sciences, 42, 897-909 (2003)
[8] Ho, C. and Tai, Y. Micro-electro-mechanical-systems (MEMS) and fluid flows. Annual Review ofFluid Mechanics, 30, 579-612 (1998)
[9] Karniadakis, G. E. and Beskok, A. Micro Flows Fundamentals and Simulation, Springer-Verlag,New York, 55-70 (2002)
[10] Bejan, A. Entropy Generation Through Heat and Fluid Flow, 2nd ed., Wiley, New York (1994)
[11] Abu-Nada, E. Investigation of entropy generation over a backward facing step under bleedingconditions. Energy Conversion and Management, 49, 3237-3242 (2008)
[12] Abu-Nada, E. Numerical prediction of entropy generation in separated flows. Entropy, 7, 234-252(2005)
[13] Abu-Nada, E. Entropy generation due to heat and fluid flow in backward facing step flow withvarious expansion ratios. International Journal of Energy, 3, 419-435 (2006)
[14] Chen, S., Liu, Z., Shi, B., and Zheng, C. G. Computation of gas-solid flows by finite differenceBoltzmann equation. Applied Mathematics and Computation, 173, 33-49 (2006)
[15] Chen, S., Shi, B., Liu, Z., He, Z., Guo, Z. L., and Zheng, C. G. Lattice-Boltzmann simulation ofparticle-laden flow over a backward-facing step. Chinese Physics, 13, 1657-1664 (2004)
[16] Qian, Y. H., D’Dumières, D., and Lallemand, P. Lattice BGK models for Navier-Stokes equation.Europhysics Letters, 17, 479-484 (1992)
[17] Benzi, R., Succi, S., and Vergassola, M. The lattice Boltzmann equation: theory and applications.Physics Report, 222, 145-197 (1992)
[18] Chen, S. and Doolen, G. D. Lattice Boltzmann method for fluid flows. Annual Review of FluidMechanics, 30, 329-364 (1998)
[19] Succi, S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford UniversityPress, Oxford, 10-52 (2001)
[20] Chen, S. and Krafczyk, M. Entropy generation in turbulent natural convection due to internalheat generation. International Journal of Thermal Sciences, 48, 1978-1987 (2009)
[21] Lioua, K., Oztop, H. F., Borjini, M. N., and Al-Salemc, K. Second law analysis in a three dimensionallid-driven cavity. International Communications in Heat and Mass Transfer, 38, 1376-1383(2011)
[22] Kuo, L. S. and Chen, P. H. Numerical implementation of thermal boundary conditions in thelattice Boltzmann method. International Journal of Heat and Mass Transfer, 52, 529-532 (2009) |