[1] Yanik, E. G. and Fairweather, G. Finite element methods for parabolic and hyperbolic partial integro-differential equations. Nonlinear Anal., 12(8), 785-809 (1988)
[2] López-Marcos, J. C. A difference scheme for a nonlinear partial integrodifferential equation. SIAM J. Numer. Anal., 27(1), 20-31 (1990)
[3] Chen, C., Thomée, V., and Wahlbin, L. B. Finite element approximation of a parabolic integrodifferential equation with a weakly singular kernel. Math. Comp., 58(198), 587-602 (1992)
[4] Guo, H. and Rui, H. X. Least-squares Galerkin procedures for parabolic integro-differential equations. Appl. Math. Comput., 150(3), 749-762 (2004)
[5] Shi, D. Y. and Zhang, B. Y. High accuracy analysis of anisotropic finite element method for nonlinear parabolic integrodifferential equations. Math. Appl., 21(3), 436-442 (2008)
[6] Sinha, R. K., Ewing, R. E., and Lazarov, R. D. Mixed finite element approximations of parabolic integro-differential equations with nonsmooth initial data. SIAM J. Numer. Anal., 47(5), 3269- 3292 (2009)
[7] Pani, A. K. and Yadav, S. An hp-local discontinuous Galerkin method for parabolic integrodifferential equations. J. Sci. Comput., 46(1), 71-99 (2011)
[8] Guo, H., Zhang, J. S., and Fu, H. F. Two splitting positive definite mixed finite element methods for parabolic integro-differential equations. Appl. Math. Comput., 218(22), 11255-11268 (2012)
[9] Jia, S. H., Li, D. L., Liu, T., and Zhang, S. H. Richardson extrapolation and defect correction of mixed finite element methods for integro-differential equations in porous media. Appl. Math., 53(1), 13-39 (2008)
[10] Reddy, G. M. and Sinha, R. K. Ritz-Volterra reconstructions and a posteriori error analysis of finite element method for parabolic integro-differential equations. IMA J. Numer. Anal. (2013) DOI 10.1093/imanum/drt059
[11] Ewing, R., Lazarov, R., and Lin, Y. P. Finite volume element approximations of nonlocal reactive flows in porous media. Numer. Meth. Part. D. E., 16(3), 285-311 (2000)
[12] Fairweather, G. Spline collocation methods for a class of hyperbolic partial integro-differential equations. SIAM J. Numer. Anal., 31(2), 444-460 (1994)
[13] Pani, A. K. An H1-Galerkin mixed finite element method for parabolic partial differential equations. SIAM J. Numer. Anal., 35(2), 712-727 (1998)
[14] Guo, L. and Chen, H. H. H1-Galerkin mixed finite element method for the regularized long wave equation. Computing, 77(2), 205-221 (2006)
[15] Pani, A. K., Sinha, R. K., and Otta, A. K. An H1-Galerkin mixed method for second order hyperbolic equations. Int. J. Numer. Anal. Model., 1(2), 111-130 (2004)
[16] Liu, Y. and Li, H. H1-Galerkin mixed finite element methods for pseudo-hyperbolic equations. Appl. Math. Comput., 212(2), 446-457 (2009)
[17] Wang, R. W. Error estimates for H1-Galerkin mixed finite element methods for a hyperbolic type integro-differential equation. Math. Numer. Sin., 28(1), 19-30 (2006)
[18] Pani, A. K. and Fairweather, G. H1-Galerkin mixed finite element methods for parabolic partial integro-differential equations. IMA J. Numer. Anal., 22(2), 231-252 (2002)
[19] Chen, H. B., Xu, D., and Liu, X. Q. An H1-Galerkin mixed finite element method for nonlinear parabolic partial integro-differential equations (in Chinese). Acta Math. Appl. Sin., 31(4), 702-712 (2008)
[20] Shi, D. Y. and Wang, H. H. An H1-Galerkin nonconforming mixed finite element method for integro-differential equation of parabolic type. J. Math. Res. Expo., 29(5), 871-881 (2009)
[21] Shi, D. Y., Mao, S. P., and Chen, S. C. An anisotropic nonconforming finite element with some superconvergence results. J. Comput. Math., 23(3), 261-274 (2005)
[22] Apel, T. and Nicaise, S., and Schöberl, J. Crouzeix-Raviart type finite elements on anisotropic meshes. Numer. Math., 89(2), 193-223 (2001)
[23] Lin, Q. and Lin, J. F. Finite Element Methods: Accuracy and Improvement, Science Press, Beijing (2006)
[24] Yan, N. N. Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods, Science Press, Beijing (2008) |