[1] Parvizian, J., Düster, A., and Rank, E. Finite cell method: h- and p-extension for embedded domain problems in solid mechanics. Comput. Mech., 41(1), 121-133 (2007)
[2] Düster, A., Parvizian, J., Yang, Z., and Rank, E. The finite cell method for 3D problems of solid mechanics. Comput. Method. Appl. M., 197, 3768-3782 (2008)
[3] Saul'ev, V. On solving boundary value problems with high performance computers by a fictitious domain method. Siberian Math. J., 4(4), 912-912 (1963)
[4] Neittaanmäki, P. and Tiba, D. An embedding of domains approach in free boundary problems and optimal design. SIAM J. Control Optim., 33(5), 1587-1602 (1995)
[5] Rusten, T., Vassilevski, P., andWinther, R. Domain embedding preconditioners for mixed systems. Numer. Linear Algebr., 5(5), 321-345 (1998)
[6] Szabó, B. and Babuška, I. Finite Element Analysis, John Wiley & Sons, New York (1991)
[7] Düster, A. and Rank, E. A p-version finite element approach for two- and three-dimensional problems of the J2 flow theory with non-linear isotropic hardening. Int. J. Numer. Meth. Eng., 53, 49-63 (2001)
[8] Düster, A. and Rank, E. The p-version of the finite element method compared to an adaptive h-version for the deformation theory of plasticity. Comput. Method. Appl. M., 190, 1925-1935 (2001)
[9] Düster, A., Niggl, A., Nübel, V., and Rank, E. A numerical investigation of high-order finite elements for problems of elastoplasticity. J. Sci. Comput., 17(1), 397-404 (2002)
[10] Holzer, S. and Yosibash, Z. The p-version of the finite element method in incremental elasto-plastic analysis. Int. J. Numer. Meth. Eng., 39, 1859-1878 (1996)
[11] Jeremic, B. and Xenophontos, C. Application of the p-version of the finite element method to elasto-plasticity with localization of deformation. Commun. Numer. Meth. En., 15(12), 867-876 (1999)
[12] Szabó, B., Actis, R., and Holzer, S. Solution of Elastic-Plastic Stress Analysis Problems by the P- version of the Finite Element Method, Tech. Rep. WU/CCM-93/3, Center for COMPUT MECH, Washington University (1993)
[13] Abedian, A., Parvizian, J., Düster, A., and Rank, E. The finite cell method for the J2 flow theory of plasticity. Finite Elem. Anal. Des., 69, 37-47 (2013)
[14] Abedian, A., Parvizian, J., Düster, A., Khademyzadeh, H., and Rank, E. Performance of different integration schemes facing discontinuities in the finite cell method. Int. J. Comput. Meth., 10, 1350002 (2013)
[15] Schillinger, D., Ruess, M., Düster, A., and Rank, E. The finite cell method for large deformation analysis. Pamm., 11, 271-272 (2011)
[16] Joulaian, M. and Düster, A. Local enrichment of the finite cell method for problems with material interfaces. Comput. Mech., 52, 741-762 (2013)
[17] Schillinger, D., Düster, A., and Rank, E. The hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanics. Int. J. Numer. Meth. Eng., 89, 1171-1202 (2012)
[18] Szabó, B., Düster, A., and Rank, E. The p-version of the finite element method. Encyclopedia of Computational Mechanics (eds. Stein, E., de Borst, R., and Hughes, T. J. R.), Vol. 1, John Wiley & Sons, Chap. 5, 119-139 (2004)
[19] Düster, A., Bröker, H., and Rank, E. The p-version of the finite element method for threedimensional curved thin walled structures. Int. J. Numer. Meth. Eng., 52, 673-703 (2001)
[20] Simo, J. C. and Hughes, T. J. R. Computational Inelasticity, Springer-Verlag, New York (1998)
[21] De Berg, M., Cheong, O., van Kreveld, M., and Overmars, M. Computational Geometry: Algo- rithms and Applications, Springer-Verlag, New York (2008)
[22] Stein, E. Error-Controlled Adaptive Finite Elements in Solid Mechanics, Wiley, New York (2003)
[23] Düster, A., Bröker, H., Heidkamp, H., Heißerer, U., Kollmannsberger, S., Krause, R., Muthler, A., Niggl, A., Nübel, V., Rücker, M., and Scholz, D. AdhoC4—User's Guide, Lehrstuhl für Bauinformatik, Technische Universität München (2004)
[24] Mathematics and Engineering Analysis Unit of Boeing Phantom Works. SPOOLES 2.2: Sparse Object Oriented Linear Equations Solver, http://www.netlib.org/linalg/spooles/spooles.2.2.html (2013)
[25] Kitware. Paraview, http://www.paraview.org (2013)
[26] 3DS. Abaqus Unified Fea, http://www.simulia.com/products/abaqus fea.html (2013)
[27] Abaqus Theory Manual, Hibbitt, Karlsson & Sorensen, Inc., Rhode Island (1998)
[28] Ainsworth, M. A preconditioner based on domain decomposition for h-p finite element approximation on quasi-uniform meshes. SIAM J. Numer. Anal., 33(4), 1358-1376 (1996)
[29] Mandel, J. Iterative solvers by substructuring for the p-version finite element method. Comput. Method. Appl. M., 80, 117-128 (1990)
[30] Papadrakakis, M. and Babilis, G. Solution techniques for the p-version of the adaptive finite element method. Int. J. Numer. Meth. Eng., 37, 1413-1431 (1994)
[31] Rank, E., Rücker, M., Düster, A., and Bröker, H. The efficiency of the p-version finite element method in a distributed computing environment. Int. J. Numer. Meth. Eng., 52, 589-604 (2001) |