[1] Smoluchowski, M. V. Drei vortrage uber diffusion, brownsche molekular bewegung und koagulation von kolloidteilchen. Zeitschriftür Physik, 17, 557-585 (1916)
[2] Friedlander, S. K. Smoke, Dust and Haze: Fundamentals of Aerosol Dynamics, Oxford University Press, Oxford (2000)
[3] Silk, J. and White, S. D. The development of structure in the expanding universe. Astrophysical Journal, 223, 59-62 (1978)
[4] Ziff, R. M. Kinetics of polymerization. Journal of Statistical Physics, 23, 241-263 (1980)
[5] Niwa, H. S. School size statistics of fish. Journal of Theoretical Biology, 195, 351-361 (1998)
[6] Kiorboe, T. Formation and fate of marine snow: small-scale processes with large-scale implications. Scientia Marina, 66, 67-71 (2001)
[7] Yu, F. G. and Turko, R. P. From molecular clusters to nanoparticles: role of ambient ionization in tropospheric aerosol formation. Journal of Geophysical Research: Atmospheres, 106, 4797-4814 (2001)
[8] Zhao, H., Kruis, F. E., and Zheng, C. Monte Carlo simulation for aggregative mixing of nanoparticles in two-component systems. Industrial & Engineering Chemistry Research, 50, 10652-10664 (2011)
[9] Matsoukas, T., Lee, K., and Kim, T. Mixing of components in two-component aggregation. AIChE Journal, 52, 3088-3099 (2006)
[10] Van Dongen, P. G. J. and Ernst, M. H. Scaling solutions of Smoluchowski's coagulation equation. Journal of Statistical Physics, 50, 295-329 (1988)
[11] Leyvraz, F. Scaling theory and exactly solved models in the kinetics of irreversible aggregation. Physics Report, 383, 59-219 (2006)
[12] Lushnikov, A. A. Evolution of coagulating systems 3: coagulating mixtures. Journal of Colloid and Interface Science, 54, 94-100 (1976)
[13] Krapivsky, P. L. and Ben-Naim, E. Aggregation with multiple conservation laws. Physical Review E, 53, 291-298 (1996)
[14] Vigil, R. D. and Ziff, R. M. On the scaling theory of two-component aggregation. Chemical Engineering Science, 53, 1725-1729 (1998)
[15] Fernandez-Diaz, J. M. and Gomez-Garcia, G. J. Exact solution of Smoluchowski's continuous multicomponent equation with an additive kernel. Europhysics Letter, 78, 56002 (2007)
[16] Fernandez-Diaz, J. M. and Gomez-Garcia, G. J. Exact solution of a coagulation equation with a product kernel in the multicomponent case. Physics D, 239, 279-290 (2010)
[17] Lushnikov, A. A. and Kulmala, M. Singular self-preserving regimes of coagulation processes. Physical Review E, 65, 1-12 (2002)
[18] Davies, S. C., King, J. R., and Wattis, J. A. D. The Smoluchowski coagulation equation with continuous injection. Journal of Physics A: Mathematical General, 32, 7745-7763 (1999)
[19] Chanuhan, S. S., Chakroborty, J., and Kumar, S. On the solution and applicability of bivariate population balance wquations for mixing in particle phase. Chemical Engineering Science, 65, 3914 (2010)
[20] Marshall, C. L., Rajniak, P., and Matsoukas, T. Numerical simulations of two-component granulation:comparison of three methods. Chemical Engineering Research and Design, 89, 545-552(2010)
[21] Lin, Y., Lee, K., and Matsoukas, T. Solution of the population balance equation using constantnumberMonte Carlo. Chemical Engineering Science, 57, 2241 (2002)
[22] Zhao, H., Kruis, F. E., and Zheng, C. A differentially weighted Monte Carlo methods for twocomponentcaogulation. Journal of Computational Physics, 229, 6931-6945 (2010)
[23] Dabies, S. C., King, J. R., and Wattis, J. A. D. Self-similar behavior in the coagulation equations.Journal of Engineering Mathematics, 36, 57-88 (1999) |