[1] Martini, J. E. The Production and Analysis of Microcellular Foam, Ph. D. dissertation, MIT (1981)
[2] Kumar, V. and Suh, N. P. A process for making microcellular thermoplastic parts. Polymer Engineering and Science, 30, 1323-1329 (1990)
[3] Murray, R. E., Weller, J. E., and Kumar, V. Solid-state microcellular acrylonitrile-butadyne-styrene foams. Cellular Polymers, 19, 413-426 (2000)
[4] Kumar, V. and Weller, J. E. Production of microcellular polycarbonate using carbon dioxide for bubble nucleation. ASME Journal of Engineering for Industry, 116, 413-420 (1994)
[5] Aubert, J. H. and Clough, R. H. Low-density, microcellular polystyrene foams. Polymer, 26, 2047-2054 (1985)
[6] Nadella, K. and Kumar, V. Extrusion of microcellular PVC. 63rd Society of Plastics Engineers, Knovel, New York (2005)
[7] Martinache, J. D., Royer, J. R., Siripurapu, S., Hénon F. E., Genzer, J., Khan, S. A., and Carbonell, R. G. Processing of polyamide 11 with supercritical carbon dioxide. Industrial and Engineering Chemistry Research, 40, 5570-5577 (2001)
[8] Miller, D. and Kumar, V. Fabrication of microcellular HDPE foams in a sub-critical CO2 process. Cellular Polymers, 28, 25-40 (2009)
[9] Goel, S. K. and Beckman, E. J. Generation of microcellular polymeric foams using supercritical carbon dioxide I: effect of pressure and temperature on nucleation. Polymer Engineering and Science, 34, 1137-1147 (1994)
[10] Kumar, V., Nadella, K., Branch, G., and Flinn, B. Extrusion of microcellular foams using pre-saturated pellets and solid-state nucleation. Cellular Polymers, 23, 369-385 (2004)
[11] Li, W., Nadella, K., and Kumar, V. Manufacturing of micro-scale open-cell polymeric foams using the solid-state foaming process. Transactions of NAMRI/SME, 31, 371-378 (2003)
[12] Kumar, V., VanderWel, M., Weller, J. E., and Seeler, K. A. Experimental characterization of tensile behavior of microcellular polycarbonate foams. ASME Journal of Engineering Materials and Technology, 116, 439-445 (1994)
[13] Lin, C. K., Chen, S. H., Liou, H. Y., and Tian, C. C. Study on mechanical properties of ABS parts in microcellular injection molding process. 63rd Society of Plastics Engineers, Knovel, New York (2005)
[14] Fu, J., Jo, C., and Naguib, H. The effect of the processing parameters on the mechanical properties of PMMA microcellular foams. ANTEC, 2616-2621 (2005)
[15] Bureau, M. and Kumar, V. Fracture toughness of high density polycarbonate microcellular foams. Journal of Cellular Plastics, 42, 229-240 (2006)
[16] Juntunen, R. P., Kumar, V., Weller, J. E., and Bezubic, W. R. Impact strength of high density microcellular PVC foams. Journal of Vinyl and Additive Technology, 6, 93-99 (2000)
[17] Kumar, V., Juntunen, R. P., and Barlow, C. Impact strength of high relative density solid state carbon dioxide blown crystallizable poly (ethylene terephthalate) microcellular foams. Cellular Polymers, 19, 25-37 (2000)
[18] Seeler, K. A. and Kumar, V. Tension-tension fatigue of microcellular polycarbonate: initial results. Journal of Reinforced Plastics and Composites, 12, 359-376 (1993)
[19] Arun, P., Wing, G., Kumar, V., and Tuttle, M. The effect of CO2 on the creep response of polycarbonate. Polymer Engineering and Science, 45, 1639-1644 (2005)
[20] Lee, L. J., Zeng, C., Cao, X., Han, X., Shen, J., and Xu, G. Polymer nanocomposite foams. Composites Science and Technology, 65, 2344-2363 (2005)
[21] Jo, C. and Naguib, H. E. Effect of nanoclay and foaming conditions on the mechanical properties of HDPE-clay nanocomposite foams. Journal of Cellular Plastics, 43, 111-121 (2007)
[22] Nam, P. H., Maiti, P., Okamoto, M., Kotaka, T., Nakayama, T., Takada, M., Ohshima, M., Usuki, A., Hasegawa, N., and Okamoto, H. Foam processing and cellular structure of polypropylene/clay nanocomposites. Polymer Engineering and Science, 42, 1907-1918 (2002)
[23] Alian, A. M. and Abu-Zahra, N. H. Mechanical properties of rigid foam PVC-clay nanocomposites. Polymer-Plastics Technology and Engineering, 48, 1014-1019 (2009)
[24] Ito, Y., Yamashita, M., and Okamoto, M. Foam processing and cellular structure of polycarbonate-based nanocomposites. Macromolecular Materials and Engineering, 291, 773-783 (2006)
[25] Zhu, B., Zha, W., Yang, J., Zhang, C., and Lee, L. J. Layered-silicate based polystyrene nanocom-posite microcellular foam using supercritical carbon dioxide as blowing agent. Polymer, 51, 2177- 2184 (2010)
[26] Yeh, J. M., Chang, K. C., Peng, C. W., Lai, M. C., Hung, C. B., Hsu, S. C., Hwang, S. S., and Lin, H. R. Effect of dispersion capability of organoclay on cellular structure and physical properties of PMMA/clay nanocomposite foams. Materials Chemistry and Physics, 115, 744-750 (2009)
[27] Yuan, M. and Turng, L. S. Microstructure and mechanical properties of microcellular injection molded polyamide-6 nanocomposites. Polymer, 46, 7273-7292 (2005)
[28] Ema, Y., Ikeya, M., and Okamoto, M. Foam processing and cellular structure of polylactide-based nanocomposites. Polymer, 47, 5350-5359 (2006)
[29] Hwang, S. S., Liu, S. P., Hsu, P. P., Yeh, J. M., Chang, K. C., and Lai, Y. Z. Effect of organoclay on the mechanical/thermal properties of microcellular injection molded PBT-clay nanocomposites. International Communications in Heat and Mass Transfer, 37, 1036-1043 (2010) |