[1] Hanna, N. and Tobias, S. A theory of nonlinear regenerative chatter. Journal of Manufacturing Science and Engineering, 96, 247-255 (1974)
[2] Abou-Rayan, A. M., Nayfeh, A. H., Mook, D. T., and Nayfeh, M. A. Nonlinear responses of a parametrically excited buckled beam. Nonlinear Dynamics, 4, 499-525 (1993)
[3] Nayfeh, A. H., Nayefeh, J. F., and Mook, D. T. On methods for continuous systems with quadratic and cubic nonlinearities. Nonlinear Dynamics, 3, 145-162 (1992)
[4] Nayfeh, A. H. and Lacarbonara, W. On the discretization of distributed-parameter systems with quadratic and cubic nonlinearities. Nonlinear Dynamics, 13, 203-220 (1997)
[5] Cheung, Y. K., Chen, S. H., and Lau, S. L. A modified Lindstedt-Poincaré method for certain strongly nonlinear oscillators. International Journal of Non-Linear Mechanics, 26, 367-378 (1991)
[6] Huseyin, K. and Lin, R. An intrinsic multiple-scale harmonic-balance method for nonlinear vibration and bifurcation problems. International Journal of Non-Linear Mechanics, 26, 727-740 (1991)
[7] Xu, Z. and Cheung, Y. K. Averaging method using generalized harmonic functions for strongly nonlinear oscillators. Journal of Sound and Vibration, 174, 563-576 (1994)
[8] Pakdemirli, M. A comparison of two perturbation methods for vibrations of systems with quadratic and cubic nonlinearities. Mechanics Research Communications, 21, 203-208 (1994)
[9] Chen, S. H., Yang, X. M., and Cheung, Y. K. Periodic solutions of strongly quadratic nonlinear oscillators by the elliptic perturbation method. Journal of Sound and Vibration, 212, 771-780 (1998)
[10] Chen, S. H., Yang, X. M., and Cheung, Y. K. Periodic solutions of strongly quadratic nonlinear oscillators by the elliptic Lindstedt-Poincaré method. Journal of Sound and Vibration, 227, 1109- 1118 (1999)
[11] Lakrad, F. and Belhaq, M. Periodic solutions of strongly nonlinear oscillators by the multiple scales method. Journal of Sound and Vibration, 258, 677-700 (2002)
[12] Mickens, R. E. Quadratic nonlinear oscillators. Journal of Sound and Vibration, 270, 427-432 (2004)
[13] Cveticanin, L. Vibrations of the nonlinear oscillator with quadratic nonlinearity. Physica A, 341, 123-135 (2004)
[14] Wu, B. S. and Lim, C. W. Large amplitude nonlinear oscillations of a general conservative system. International Journal of Non-Linear Mechanics, 39, 859-870 (2004)
[15] Hu, H. Exact solution of a quadratic nonlinear oscillator. Journal of Sound and Vibration, 295, 450-457 (2006)
[16] Hu, H. Solution of a quadratic nonlinear oscillator by the method of harmonic balance. Journal of Sound and Vibration, 293, 462-468 (2006)
[17] Hu, H. Solutions of a quadratic nonlinear oscillator: iteration procedure. Journal of Sound and Vibration, 298, 1159-1165 (2006)
[18] Thompson, J. M. T. and Hunt, G.W. A General Theory of Elastic Stability, Wiley, London (1973)
[19] Jiang, W. A. and Chen, L. Q. Snap-through piezoelectric energy harvesting. Journal of Sound and Vibration, 333, 4314-4325 (2014) |