[1] Rayleigh, L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proceedings of the London Mathematical Society, 14(1), 170-177(1883)
[2] Taylor, G. I. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proceedings of the Royal Society of London Series A, 201(1065), 192-196(1950)
[3] Conrad, C. P. and Molnar, P. The growth of Rayleigh-Taylor-type instabilities in the lithosphere for various rheological and density structures. Geophysical Journal International, 129, 95-112(1997)
[4] Houseman, G. A. and Molnar, P. Gravitational (Rayleigh-Taylor) instability of a layer with nonlnear viscosity and convective thinning of continental lithosphere. Geophysical Journal International, 128, 125-150(1997)
[5] Michioka, H. and Sumita, I. Rayleigh-Taylor instability of a particle packed viscous fluid:implications for a solidifying magma. Geophysical Research Letters, 32, L03309(2005)
[6] Ribeyre, X., Tikhonchuk, V. T., and Bouquet, S. Compressible Rayleigh-Taylor instabilities in supernova remnants. Physics of Fluids, 16(12), 4661-4670(2004)
[7] Lindl, J. D., McCrory, R. L., and Campbell, E. M. Progress toward ignitition and burn propagation in inertial confinement fusion. Physics Today, 45, 32-40(1992)
[8] Kilkenny, J. D., Glendinning, S. G., Haan, S. W., Hammel, B. A., Lindl, J. D., Munro, D., Remington, B. A., Weber, S. V., Knauer, J. P., and Verdon, C. P. A review of the ablative stabilization of the Rayleigh-Taylor instability in regimes relevant to inertial confinement fusion. Physics of Plasmas, 1(5), 1379-1389(1994)
[9] Regan, S. P., Epstein, R., Hammel, B. A., Suter, L. J., Scott, H. A., Barrios, M. A., Bradley, D. K., Callahan, D. A., Cerjan, C., Collins, G. W., Dixit, S. N., Döppner, T., Edwards, M. J., Farley, D. R., Fournier, K. B., Glenn, S., Glenzer, S. H., Golovkin, I. E., Haan, S. W., Hamza, A., Hicks, D. G., Izumi, N., Jones, O. S., Kilkenny, J. D., Kline, J. L., Kyrala, G. A., Landen, O. L., Ma, T., MacFarlane, J. J., Mackinnon, A. J., Mancini, R. C., McCrory, R. L., Meezan, N. B., Meyerhofer, D. D., Nikroo, A., Park, H. S., Ralph, J., Remington, B. A., Sangster, T. C., Smalyuk,V. A., Springer, P. T., and Town, R. P. Hot-spot mix in ignition-scale inertial confinement fusion targets. Physics Review Letters, 111(4), 045001(2013)
[10] Harrison, W. J. The influence of viscosity on the oscillations of superposed fluids. Proceedings of the London Mathematical Society, 2, 396-405(1908)
[11] Bellman, R. and Pennington, R. H. Effects of surface tension and viscosity on taylor instability. Quarterly Journal of Mechanics and Applied Mathematics, 12, 151-162(1954)
[12] Chandrasekhar, S. The character of the equilibrium of an incompressible heavy viscous fluid of variable density. Mathematical Proceedings of the Cambridge Philosophical Society, 51, 162-178(1955)
[13] Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability, Oxford University Press, London (1961)
[14] Mikaelian, K. O. Rayleigh-Taylor instabilities in stratified fluids. Physical Review A, 26(4), 2140-2158(1982)
[15] Mikaelian, K. O. Time evolution of density perturbations in accelerating stratified fluids. Physical Review A, 28(3), 1637-1646(1983)
[16] Mikaelian, K. O. Rayleigh-Taylor and Richtmyer-Meshkov instabilities and mixing in stratified spherical shell. Physical Review A, 42(6), 3400-3420(1990)
[17] Goldston, R. J. and Rutherford, P. H. Introduction to Plasma Physics, Institute of Physics Publishing, Bristol (1997)
[18] Ramaprabhu, P., Karkhanis, V., and Lawrie, A. G. W. The Rayleigh-Taylor instability driven by an accel-decel-accel profile. Physics of Fluids, 25, 115104(2013)
[19] Liang, H., Shi, B. C., Guo, Z. L., and Chai, Z. H. Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows. Physical Review E, 89, 053320(2014)
[20] Sagert, I., Howell, J., Staber, A., Strother, T., Colbry, D., and Bauer, W. Knudsen-number dependence of two-dimensional single-mode Rayleigh-Taylor fluid instabilities. Physical Review E, 92, 013009(2015)
[21] Hide, R. The character of the equilibrium of an incompressible heavy viscous fluid of variable density:an approximate theory. Mathematical Proceedings of the Cambridge Philosophical Society, 51, 179-201(1955)
[22] Reid, W. H. The effects of surface tension and viscosity on the stability of two superposed fluids. Mathematical Proceedings of the Cambridge Philosophical Society, 57(2), 415-425(1961)
[23] Menikoff, R., Mjolsness, R. C., Sharp, D. H., and Zemach, C. Unstable normal mode for RayleighTaylor instability in viscous fluids. Physics of Fluids, 20(12), 2000-2004(1977)
[24] Mikaelian, K. O. Effect of viscosity on Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Physical Review E, 47, 375-383(1993)
[25] Nie, X. B., Qian, Y. H., Doolen, G. D., and Chen, S. Y. Lattice Boltzmann simulation of the two-dimensional Rayleigh-Taylor instability. Physical Review E, 58, 6861-6864(1998)
[26] He, X. Y., Chen, S. Y., and Zhang, R. Y. A lattice boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. Journal of Computational Physics, 152, 642-663(1999)
[27] Kadau, K., Germann, T. C., Hadjiconstantinou, N. G., Lomdahl, P. S., Dimonte, G., Holian, B. L., and Alder, B. J. Nanohydrodynamics simulations:an atomistic view of the Rayleigh-Taylor instability. Proceedings of the National Academy of Sciences, 101(16), 5851-5855(2004)
[28] Barber, J. L., Kadau, K., Germann, T. C., and Alder, B. J. Initial growth of the Rayleigh-Taylor instability via molecular dynamics. The European Physical Journal B, 64, 271-276(2008)
[29] Duff, R. E., Harlow, F. H., and Hirt, C. W. Effects of diffusion on interface instability between gases. Physics of Fluids, 5(4), 417-425(1962)
[30] Batchelor, G. K. and Nitsche, J. M. Instability of stationary unbounded stratified fluid. Journal of Fluid Mechanics, 227, 357-391(1991)
[31] Kurowski, P., Misbah, C., and Tchourkine, S. Gravitational instability of a fictitious front during mixing of miscible fluids. Europhysics Letters, 29(4), 309-314(1995)
[32] Brouillette, M. and Sturtevant, B. Experiments on the Richtmyer-Meshkov instability:single-scale perturbations on a continuous interface. Journal of Fluid Mechanics, 263, 271-292(1994)
[33] Fournier, E., Gauthier, S., and Renaud, F. 2D pseudo-spectral parallel Navier-Stokes simulations of compressible Rayleigh-Taylor instability. Computers and Fluids, 31, 569-587(2002)
[34] Amiroudine, S., Boutrouft, K., and Zappoli, B. The stability analysis of two layers in a supercritical pure fluid:Rayleigh-Taylor-like instabilities. Physics of Fluids, 17, 054102(2005)
[35] Boutrouft, K., Amiroudine, S., and Ambari, A. Stability diagram and effect of initial density stratification for a two-layer system in a supercritical fluid. Physics of Fluids, 18, 124106(2006)
[36] Tartakovsky, A. M. and Meakin, P. A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh-Taylor instability. Journal of Computational Physics, 207, 610-624(2005)
[37] Schneider, N., Hammouch, Z., Labrosse, G., and Gauthier, S. A spectral anelastic Navier-Stokes solver for a stratified two-miscible-layer system in infinite horizontal channel. Journal of Computational Physics, 299, 374-403(2015)
[38] Wei, T. and Livescu, D. Late-time quadratic growth in single-mode Rayleigh-Taylor instability. Physical Review E, 86, 046405(2012)
[39] Zhao, Y. P. Moving contact line problem:advances and perspectives. Theoretical and Applied Mechanics Letters, 4, 034002(2014)
[40] Gueyffier, D., Li, J., Nadim, A., Scardovelli, R., and Zaleski, S. Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. Journal of Computational Physics, 152, 423-456(1999)
[41] Chevalier, M., Schlatter, P., Lundbladh, A., and Henningson, D. S. SIMSON:A Seudo-Spectral Solver for Incompressible Boundary Layer Flows, Technical Report TRITA-MEK 2007:07, KTH Mechanics, Stockholm (2007) |