[1] Mouri, H., Hori, A., and Kawashima, Y. Vortex tubes in velocity fields of laboratory isotropic turbulence. Physics Letters A, 276, 115-121(2000)
[2] Robinson, A. C. and Saffman, P. G. Stability and structure of stretched vortices. Studies in Applied Mathematics, 70, 163-181(1984)
[3] Lin, S. J. and Corcos, G. M. The effect of plane strain on the dynamics of streamwise vortices. Journal of Fluid Mechanics, 141, 139-178(1984)
[4] Neu, J. C. The dynamics of stretched vortices. Journal of Fluid Mechanics, 143, 253-276(1984)
[5] Townsend, A. A. On the fine-scale structure of turbulence. Proceedings of the Royal Society of London A, 208, 534-542(1951)
[6] Lundgren, T. S. Strained spiral vortex model for turbulent fine structure. Physics of Fluids, 25, 2193-2203(1982)
[7] Shivamoggi, B. K. Vortex stretching and reconnection in a compressible fluid. The European Physical Journal B, 49, 483-490(2006)
[8] Rollins, D. K. Exact solutions for modified Burgers vortex. https://arxiv.org/abs/0901.1279v1(2009)
[9] Van Gorder, R. A. Exact solutions to the modified 2D Burgers vortex equation:a general result for the unsteady case. Acta Mechanica, 216, 345-350(2011)
[10] Lie, S. Uber die integration durch bestimmte integrale von einer klasse linearer partieller differential gleichungen. Archiv der Mathematik, 6, 328-368(1881)
[11] Ovsiannikov, L. V. Group relations of the equation of nonlinear heat conductivity. Doklady Akademii Nauk Sssr, 125, 492-495(1959)
[12] Bluman, G. W. and Kumei, S. Symmetries and Differential Equations, Springer-Verlag, New York (1989)
[13] Olver, P. J. Applications of Lie Groups to Differential Equations, Springer-Verlag, New York (1993)
[14] Bluman, G. W. and Cole, J. D. The general similarity solutions of the heat equation. Journal of Mathematics and Mechanics, 18, 1025-1042(1969)
[15] Ibragimov, N. H. Lie Group Analysis of Differential Equations, CRC Press, Boca Raton/New York/London/Tokyo (1996)
[16] Temuer, C. L. and Bai, Y. S. Differential characteristic set algorithm for the complete symmetry classification of partial differential equations. Applied Mathematics and Mechanics (English Edition), 30, 595-606(2009) DOI 10.1007/s10483-009-0506-6
[17] Temuer, C. L. and Pang, J. An algorithm for the complete symmetry classification of differential equations based on Wu's method. Journal of Engineering Mathematics, 66, 181-199(2010)
[18] Temuer, C. L., Eerdun, B. H., and Xia, T. C. Nonclassical symmetry of the wave equation with source term. Chinese Annals of Mathematics (Series A), 33, 193-204(2012)
[19] Zaitsev, V. F. and Polyanin, A. D. Handbook of Exact Solutions for Ordinary Differential Equations, CRC Press, Boca Raton (2003) |