[1] Marsden, J. E., Mccracken, M., Sethna, P. R., and Sell, G. R. The Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 2209-2223(1976)
[2] Nayfeh, A. H. and Chin, C. M. Perturbation methods with mathematica, The 37th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reston (1999)
[3] Yu, P. Analysis on double Hopf bifurcation using computer algebra with the aid of multiple scales. Nonlinear Dynamics, 27(1), 19-53(2001)
[4] Chamara, P. A. and Coller, B. D. A study of double flutter. Journal of Fluids and Structures, 19(7), 863-879(2004)
[5] Yu, P. and Bi, Q. Analysis of non-linear dynamics and bifurcations of a double pendulum. Journal of Sound and Vibration, 217(4), 691-736(1998)
[6] Xie, J. and Ding, W. Hopf-Hopf bifurcation and invariant torus T 2 of a vibro-impact system. International Journal of Non-Linear Mechanics, 40(4), 531-543(2005)
[7] Revel, G., Alonso, D. M., and Moiola, J. L. A gallery of oscillations in a resonant electric circuit:Hopf-Hopf and fold-flip interactions. International Journal of Bifurcation and Chaos, 18(2), 481- 494(2011)
[8] Zhang, W. and Yu, P. A study of the limit cycles associated with a generalized codimension-3 Lienard oscillator. Journal of Sound and Vibration, 231(1), 145-173(2000)
[9] Zhang, W. and Yu, P. Degenerate bifurcation analysis on a parametrically and externally excited mechanical system. International Journal of Bifurcation and Chaos, 11(3), 689-709(2001)
[10] Yu, P. Analysis on double Hopf bifurcation using computer algebra with the aid of multiple scales. Nonlinear Dynamics, 27(1), 19-53(2001)
[11] Govaerts, W., Guckenheimer, J., and Khibnik, A. Defining functions for multiple Hopf bifurcations. SIAM Journal of Numerical Analysis, 34(3), 1269-1288(1997)
[12] Namachchivaya, N. S., Doyle, M. M., Langford, W. F., and Evans, N. W. Normal form for generalized Hopf bifurcation with non-semisimple 1:1 resonance. Zeitschrift für Angewandte Mathematik und Physik, 45(2), 312-335(1994)
[13] Zhang, W. and Ye, M. Local and global bifurcations of value mechanism. Nonlinear Dynamics, 6(6), 301-316(1994)
[14] Ge, Z. M., Yang, H. S., Chen, H. H., and Chen, H. K. Regular and chaotic dynamics of a rotational machine with a centrifugal governor. International Journal of Engineering Science, 37(7), 921-943(1999)
[15] Gattulli, V., Fabio, F. D., and Luongo, A. One to one resonant double Hopf bifurcation in aeroelastic oscillators with tuned mass dampers. Journal of Sound and Vibration, 262(2), 201-217(2003)
[16] Gattulli, V., Fabio, F. D., and Luongo, A. Simple and double Hopf bifurcations in aeroelastic oscillators with tuned mass dampers. Journal of the Franklin Institute, 338(2), 187-201(2001)
[17] Zhang, W. and Huo, Q. Z. Bifurcations of nonlinear oscillation system under combined parametric and forcing excitation. Acta Mechanics Sinica, 119(2), 291-299(1991)
[18] Luongo, A., Paolone, A., and Egidio, A. D. Multiple timescales analysis for 1:2 and 1:3 resonant Hopf bifurcations. Nonlinear Dynamics, 34(3), 269-291(2003)
[19] Le Blanc, V. G. On some secondary bifurcations near resonant Hopf-Hopf interactions. Dynamics of Continuous Discrete and Impulsive Systems B:Applications and Algorithms, 7(3), 405-427(2000)
[20] Tzou, H. S. Distributed modal identification and vibration control of continua:theory and application. Journal of Dynamic Systems Measurement and Control, 113(3), 1237-1243(1990)
[21] Tzou, H. S. A new distributed sensor and actuator theory for "intelligent" shells. Journal of Sound and Vibration, 153(2), 335-349(1992)
[22] Tzou, H. S. and Zhong, J. P. Electro mechanics and vibrations of piezoelectric shell distributed systems. Journal of Dynamics Systems, Measurement and Control, 115(3), 506-517(1993)
[23] Pratt, J. R. and Nayfeh, A. H. Design and modeling for chatter control. International Journal of Non-Linear Mechanics, 19(1), 49-69(1999)
[24] Zhang, W., Gao, M. J., Yao, M. H., and Yao, Z. G. Higher-dimensional chaotic dynamics of a composite laminated piezoelectric rectangular plate. Science in China Series G:Physics, Mechanics and Astronomy, 52(12), 1989-2000(2009)
[25] Zhang, W., Yao, Z. G., Chen, L. H., and Yang, X. L. Periodic and chaotic oscillations of laminated composite piezoelectric rectangular plate with 1:3 internal resonances. International Mechanical Engineering Conference, 9, 1893-1901(2007)
[26] Zhang, W., Yao, Z. G., and Yao, M. H. Bifurcations and chaos of composite laminated piezoelectric rectangular plate with one-to-two internal resonance. Science in China Series E:Technological Sciences, 52, 731-742(2009)
[27] Nayfeh, A. H. and Mook, D. T. Nonlinear Oscillations, Wiley, New York (1979) |