[1] Mack, L. M. Review of linear compressible stability theory. Stability of Time Dependent and Spatially Varying Flows (eds. Dwoyer D. L. and Hussaini, M. Y.), Springer, New York, 164-187(1987)
[2] Herbert, T. Secondary instability of boundary layers. Annual Review of Fluid Mechanics, 20(1), 487-526(1988)
[3] Kachanov, Y. S. Physical mechanisms of laminar-boundary-layer transition. Annual Review of Fluid Mechanics, 26(1), 411-482(1994)
[4] Li, X., Fu, D., and Ma, Y. Direct numerical simulation of hypersonic boundary layer transition over a blunt cone. AIAA Journal, 46(11), 2899-2913(2008)
[5] Li, X., Fu, D., and Ma, Y. Direct numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack. Physics of Fluids (1994-present), 22(2), 025105(2010)
[6] Liu, J. X. Evolution of Disturbance in Hypersonic Blunt Cone Boundary Layer at a Small Angle of Attack (in Chinese), Ph. D. dissertation, Tianjin University (2010)
[7] Yu, M. and Luo, J. S. Nonlinear evolution of Klebanoff type second mode disturbances in supersonic flat-plate boundary layer. Applied Mathematics and Mechanics (English Edition), 35(3), 359-368(2014) DOI 10.1007/s10483-014-1796-8
[8] Yu, M. and Luo, J. S. Nonlinear interaction mechanisms of disturbances in supersonic flat-plate boundary layers. Science China Physics, Mechanics and Astronomy, 57(11), 2141-2151(2014)
[9] Chou, A., Ward, C. A. C., Letterman, L. E., Luersen, P. K., Borg, M. P., and Schneider, S. P. Transition research with temperature-sensitive paints in the Boeing/AFOSR Mach-6 quiet tunnel. 41st AIAA Fluid Dynamics Conference and Exhibit, American Institute of Aeronautics and Astronautics, Honolulu (2011)
[10] Sivasubramanian, J. and Fasel, H. F. Numerical investigation of laminar-turbulent transition for a flared cone at Mach 6. 54th AIAA Aerospace Sciences Meeting, AIAA SciTech, San Diego (2016)
[11] Shiplyuk, A. N., Maslov, A. A., and Chokani, N. D. Nonlinear interactions of second mode instability with natural and artificial disturbances. 41st Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno (2003)
[12] Bountin, D., Shiplyuk, A., and Maslov, A. Evolution of nonlinear processes in a hypersonic boundary layer on a sharp cone. Journal of Fluid Mechanics, 611, 427-442(2008)
[13] Dong, M. and Luo, J. S. Mechanism of transition in a hypersonic sharp cone boundary layer with zero angle of attack. Applied Mathematics and Mechanics (English Edition), 28(8), 1019-1028(2007) DOI 10.1007/s10483-007-0804-2
[14] Schneider, S. P. Developing mechanism-based methods for estimating hypersonic boundary-layer transition in flight:the role of quiet tunnels. Progress in Aerospace Sciences, 72, 17-29(2015)
[15] Zhu, Y., Zhang, C., Chen, X., Yuan, H., Wu, J., Chen, S., Lee, C., and Gad-el-Hak, M. Transition in hypersonic boundary layers:role of dilatational waves. AIAA Journal, 54(10), 3039-3049(2016)
[16] Gaponov, A. A. and Terekhova, N. M. Three-wave interactions between disturbances in the hypersonic boundary layer on impermeable and porous surfaces. Fluid Dynamics, 44(3), 362-371(2009)
[17] Wu, X. and Stewart, P. A. Interaction of phase-locked modes:a new mechanism for the rapid growth of three-dimensional disturbances. Journal of Fluid Mechanics, 316, 335-372(1996)
[18] Herbert, T. Parabolized stability equations. Annual Review of Fluid Mechanics, 29(1), 245-283(1997)
[19] Chang, C. L. Langley Stability and Transition Analysis Code (LASTRAC) Version 1.2 User Manual, NASA TM 213233, NASA Langley Research Center, Langley (2004)
[20] Zhang, Y. and Zhou, H. PSE as applied to problems of transition in compressible boundary layers. Applied Mathematics and Mechanics (English Edition), 29(7), 833-840(2008) DOI 10.1007/s10483-008-0701-8
[21] Zhao, L., Zhang, C. B., Liu, J. X., and Luo, J. S. Improved algorithm for solving nonlinear parabolized stability equations. Chinese Physics B, 25(8), 084701(2016)
[22] Fang, Y., Luo, J., and Zhou, H. Numerical study of the coherent structures in wall region of a channel flow (in Chinese). Acta Mechanica Sinica, 27(5), 513-522(1995)
[23] Chang, C. L. and Malik, M. R. Oblique-mode breakdown and secondary instability in supersonic boundary layers. Journal of Fluid Mechanics, 273, 323-360(1994)
[24] Bertolotti, F. P. Linear and Nonlinear Stability of Boundary Layers with Streamwise Varying Properties, Ph. D. dissertation, The Ohio State University (1991)
[25] Mayer, C. S. J., Fasel, H. F., Choudhari, M., and Chang, C. L. Transition onset predictions for oblique breakdown in a Mach 3 boundary layer. AIAA Journal, 52(4), 882-886(2014)
[26] Sivasubramanian, J. and Fasel, H. F. Direct numerical simulation of transition in a sharp cone boundary layer at Mach 6:fundamental breakdown. Journal of Fluid Mechanics, 768, 175-218(2015) |