[1] Nguyen, N. T., Shaegh, S. A. M., Kashaninejad, N., and Phan, D. T. Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology. Advanced Drug Delivery Reviews, 65, 1403-1419(2013)
[2] Rios, Á., Zougagh, M., and Avila, M. Miniaturization throught lab -on-a-chip:utopia or reality for routine laboratories? A review. Analytica Chimica Acta, 740, 1-11(2012)
[3] Li, P. C. and Harrison, D. J. Transport, manipulation and reaction of biological cells on-chip using electrokinetic effects. Analytical Chemistry, 69, 1564-1568(1997)
[4] Probstein, R. F. Physicochemical Hydrodynamics:an Introduction, John Wiley and Sons, New York (2003)
[5] Das, S. and Chakraborty, S. Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid. Analytica Chimica Acta, 559, 15-24(2006)
[6] Peralta, M., Arcos, J., Méndez, F., and Bautista, O. Oscillatory electroosmotic flow in a parallelplate microchannel under asymmetric zeta potentials. Fluid Dynamics Research, 49, 035514(2017)
[7] Li, X. X., Yin, Z., Jian, Y. J., Chang, L., Su, J., and Liu, Q. S. Transient electro-osmotic flow of generalized Maxwell fluids through a microchannel. Journal of Non-Newtonian Fluid Mechanics, 187-188, 43-47(2012)
[8] Wang, S., Zhao, M., and Li, X. Transient electro-osmotic flow of generalized Maxwell fluids in a straight pipe of circular cross section. Central European Journal of Physics, 12, 445-451(2014)
[9] Jian, Y. J., Liu, Q. S., and Yang, L. G. AC electroosmotic flow of generalized Maxwell fluids in a rectangular microchannel. Journal of Non-Newtonian Fluid Mechanics, 166, 1304-1314(2011)
[10] Liu, Q. S., Jian, Y. J., and Yang, L. G. Time periodic electroosmotic flow of the generalizaed Maxwell fluids between two micro-parallel plates. Journal of Non-Newtonian Fluid Mechanics, 166, 478-486(2011)
[11] Bandopadhyay, A., Ghosh, U., and Chakraborty, S. Time periodic electroosmosis of linear viscoelastic liquids over patterned charged surfaces in microfluidic channels. Journal of NonNewtonian Fluid Mechanics, 202, 1-11(2013)
[12] Phan-Thien, N. On pulsating flow of polymer fluids. Journal of Non-Newtonian Fluid Mechanics, 4, 167-176(1978)
[13] Lin, Y., Tan, G. W. H., Phan-Thien, N., and Khoo, B. C. Flow enhancement in pulsating flow of non-colloidal suspensions in tubes. Journal of Non-Newtonian Fluid Mechanics, 212, 13-17(2014)
[14] Chakraborty, J., Ray, S., and Chakraborty, S. Role of streaming potential on pulsating mass flow rate control in combined electroosmotic and pressure-driven microfluidic devices. Electrophoresis, 33, 419-425(2012)
[15] Chakraborty, S. and Ray, S. Mass flow-rate control through time periodic electro-osmotic flows in circular microchannels. Physics of Fluids, 20, 1-11(2008)
[16] Rojas, G., Arcos, J., Peralta, M., Mendez, F., and Bautista, O. Pulsatile electroosmotic flow in a microcapillary with the slip boundary condition. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 513, 57-65(2017)
[17] Nguyen, N. T. Micromixers:Fundamentals, Design and Fabrication, William Andrew, (2011)
[18] Oddy, M. H., Santiago, J. G., and Mikkelsen, J. C. Electrokinetic instability micromixing. Analytical Chemistry, 73, 5822-5832(2001)
[19] Glasgow, I., Batton, J., and Aubry, N. Electroosmotic mixing in microchannels. Lab on a Chip, 4, 558-562(2004)
[20] Schasfoort, R. B., Schlautmann, S., Hendrikse, J., and van den Berg, A. Field-effect flow control for microfabricated fluidic network. Science, 286, 942-945(1999)
[21] Huang, C. C., Bazant, M. Z., and Thorsen, T. Ultrafast high-pressure AC electro-osmotic pumps for portable biomedical microfluidics. Lab on a Chip, 10, 80-85(2010)
[22] Horiuchi, K., Dutta, P., and Ivory, C. F. Electroosmotic with step changes in zeta potential in microchannels. AIChE Journal, 53, 2521-2533(2007)
[23] Soong, C. Y. and Wang, S. H. Theoretical analysis of electrokinetic flow and heat transfer in a microchannel under asymmetric boundary conditions. Journal of Colloid and Interface Science, 265, 202-213(2003)
[24] Afonso, A. M., Alves, M. A., and Pinho, F. T. Electro-osmotic flow of viscoelastic fluids in microchannels under asymmetric zeta potentials. Journal of Engineering Mathematics, 71, 15-30(2011)
[25] Choi, W., Joo, S. W., and Lim, G. Electroosmotic flows of viscoelastic fluids with asymmetric electrochemical boundary conditions. Journal of Non-Newtonian Fluid Mechanics, 187-188, 1-7(2012)
[26] Fu, L. M., Yang, R. J., Lin, C. H., and Chien, Y. S. A novel microfluidic mixer utilizing electrokinetic driving forces under low switching frequency. Electrophoresis, 26, 1814-1824(2005)
[27] Watson, E. J. Diffusion in oscillatory pipe flow. Journal of Fluid Mechanics, 133, 233-244(1983)
[28] Manopoulos, C. and Tsangaris, S. Enhanced diffusion for oscillatory viscoelastic flow. Physica Scripta, 89, 085206(2014)
[29] Masliyah, J. H. and Bhattacharjee, S. Electrokinetic and Colloid Transport Phenomena, John Wiley and Sons, New York (2006)
[30] Kang, Y., Yang, C., and Huang, X. Dynamic aspects of electroosmotic flow in a cylindrical microcapillary. International Journal of Engineering Science, 40, 2203-2221(2002)
[31] Hsu, J. P., Kuo, Y. C., and Tseng, S. Dynamic interactions of two electrical double layers. Journal of Colloid and Interface Science, 195, 388-394(1997)
[32] Yang, C., Ng, C. B., and Chan, V. Transient analysis of electroosmotic flow in a slit microchannel. Journal of Colloid and Interface Science, 248, 524-527(2002)
[33] Leal, L. G. Advanced Transport Phenomena:Fluid Mechanics and Convective Transport Processes, Cambridge University Press, Cambridge (2007)
[34] Bird, R. B., Armstrong, R. C., and Hassager, O. Dynamics of Polimeric Liquids. Vol. 1:Fluid Mechanics, Wiley-Interscience, New York (1987)
[35] Escandón, J., Jiménez, E., Hernández, C., Bautista, O., and Méndez, F. Transient electroosmotic flow of Maxwell fluids in a slit microchannel with asymmetric zeta potencials. European Journal of Mechanics-B/Fluids, 53, 180-189(2015)
[36] Happel, J. and Brenner, H. Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media (Vol. 1), Springer, Dordrecht (2012)
[37] Yoo, J. Y. and Joseph, D. D. Hyperbolicity and change of type in the flow of viscoelastic fluids through channels. Journal of Non-Newtonian Fluid Mechanics, 19, 15-41(1985)
[38] Wolfram Research Inc. Mathematica, Wolfram Research, Inc., Champaign, Illinois (2016)
[39] Green, N. G., Ramos, A., González, A., Morgan, H., and Castellanos, A. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes, I:experimental measurements. Physical Review E, 61, 4011-4018(2000)
[40] Suresh, V. and Homsy, G. M. Stability of time-modulated electroosmotic flow. Physics of Fluids, 16, 2349-2356(2004)
[41] Huang, H. F. and Lai, C. L. Enhancement of mass transport and separation of species by oscillatory electroosmotic flows. Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 462, 2017-2038(2006)
[42] Liu, Q. S., Jian, Y. J., Chang, L., and Yang, L. G. Alternating current (AC) electroosmotic flow of generalized Maxwell fluids through a circular microtube. International Journal of Physical Sciences, 7, 5935-5941(2012)
[43] Dutta, P. and Beskok, A. Analytical solution of time periodic electroosmotic flows:analogies to Stokes' second problem. Analytical Chemistry, 73, 5097-5102(2001)
[44] Bird, R. B., Stewai, W. E., and Lightfoot, E. N. Transport Phenomena, Wiley-Interscience Publication, New York (2001)
[45] Bao, L. P., Jian, Y. J., Chang, L., Su, J., Zhang, H. Y., and Liu, Q. S. Time periodic electroosmotic flow of the generalized Maxwell fluids in a semicircular microchannel. Communications in Theoretical Physics, 59, 615-622(2013) |