[1] BOUNOUARA, F., BENRAHOU, K. H., BELKORISSAT, I., and TOUNSI, A. A nonlocal zerothorder shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation. Steel and Composite Structures, 20(2), 227-249(2016)
[2] BELLIFA, H., BENRAHOU, K. H., BOUSAHLA, A. A., TOUNSI, A., and MAHMOUD, S. A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams. Structural Engineering and Mechanics, 62(6), 695-702(2017)
[3] BOUAFIA, K., KACI, A., HOUARI, M. S. A., BENZAIR, A., and TOUNSI, A. A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams. Smart Structures and Systems, 19(2), 115-126(2017)
[4] BESSEGHIER, A., HOUARI, M. S. A., TOUNSI, A., and MAHMOUD, S. Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory. Smart Structures and Systems, 19(6), 601-614(2017)
[5] THOSTENSON, E. T., REN, Z., and CHOU, T. W. Advances in the science and technology of carbon nanotubes and their composites:a review. Composites Science and Technology, 61(13), 1899-1912(2001)
[6] LAU, A. K. T. and HUI, D. The revolutionary creation of new advanced materials-carbon nanotube composites. Composites Part B:Engineering, 33(4), 263-277(2002)
[7] WANG, M., LI, Z. M., and QIAO, P. Semi-analytical solutions to buckling and free vibration analysis of carbon nanotube-reinforced composite thin plates. Composite Structures, 144, 33-43(2016)
[8] GEORGE, N., JEYARAJ, P., and MURIGENDRAPPA, S. Buckling and free vibration of nonuniformly heated functionally graded carbon nanotube reinforced polymer composite plate. International Journal of Structural Stability and Dynamics, 17, 1750064(2016)
[9] ANSARI, R., SHOJAEI, M. F., MOHAMMADI, V., GHOLAMI, R., and SADEGHI, F. Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams. Composite Structures, 113, 316-327(2014)
[10] WU, H., KITIPORNCHAI, S., and YANG, J. Thermal buckling and postbuckling analysis of functionally graded carbon nanotube-reinforced composite beams. Applied Mechanics and Materials, 846, 182-187(2016)
[11] CIVALEK, Ö. Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method. Composites Part B:Engineering, 111, 45-59(2017)
[12] MEHRI, M., ASADI, H., and WANG, Q. Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method. Computer Methods in Applied Mechanics and Engineering, 303, 75-100(2016)
[13] PHUNG-VAN, P., ABDEL-WAHAB, M., LIEW, K., BORDAS, S., and NGUYEN-XUAN, H. Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory. Composite Structures, 123, 137-149(2015)
[14] SONG, Z., ZHANG, L., and LIEW, K. Vibration analysis of CNT-reinforced functionally graded composite cylindrical shells in thermal environments. International Journal of Mechanical Sciences, 115, 339-347(2016)
[15] SHEN, H. S., LIN, F., and XIANG, Y. Nonlinear vibration of functionally graded graphenereinforced composite laminated beams resting on elastic foundations in thermal environments. Nonlinear Dynamics, 90(2), 899-914(2017)
[16] FAN, Y. and WANG, H. Nonlinear dynamics of matrix-cracked hybrid laminated plates containing carbon nanotube-reinforced composite layers resting on elastic foundations. Nonlinear Dynamics, 84(3), 1181-1199(2016)
[17] LIN, F. and XIANG, Y. Numerical analysis on nonlinear free vibration of carbon nanotube reinforced composite beams. International Journal of Structural Stability and Dynamics, 14(1), 1350056(2014)
[18] WU, H., KITIPORNCHAI, S., and YANG, J. Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets. International Journal of Structural Stability and Dynamics, 15(7), 1540011(2015)
[19] ALIBEIGLOO, A. and LIEW, K. Elasticity solution of free vibration and bending behavior of functionally graded carbon nanotube-reinforced composite beam with thin piezoelectric layers using differential quadrature method. International Journal of Applied Mechanics, 7(1), 1550002(2015)
[20] ZHANG, L., LEI, Z., and LIEW, K. Buckling analysis of FG-CNT reinforced composite thick skew plates using an element-free approach. Composites Part B:Engineering, 75, 36-46(2015)
[21] ZHANG, L., SONG, Z., and LIEW, K. State-space Levy method for vibration analysis of FGCNT composite plates subjected to in-plane loads based on higher-order shear deformation theory. Composite Structures, 134, 989-1003(2015)
[22] ZHU, P., LEI, Z., and LIEW, K. M. Static and free vibration analyses of carbon nanotubereinforced composite plates using finite element method with first order shear deformation plate theory. Composite Structures, 94(4), 1450-1460(2012)
[23] ZHANG, L. and LIEW, K. Large deflection analysis of FG-CNT reinforced composite skew plates resting on Pasternak foundations using an element-free approach. Composite Structures, 132, 974-983(2015)
[24] ZHANG, L., SONG, Z., and LIEW, K. Nonlinear bending analysis of FG-CNT reinforced composite thick plates resting on Pasternak foundations using the element-free IMLS-Ritz method. Composite Structures, 128, 165-175(2015)
[25] ZHANG, L. and LIEW, K. Geometrically nonlinear large deformation analysis of functionally graded carbon nanotube reinforced composite straight-sided quadrilateral plates. Computer Methods in Applied Mechanics and Engineering, 295, 219-239(2015)
[26] ANSARI, R., HASRATI, E., SHOJAEI, M. F., GHOLAMI, R., and SHAHABODINI, A. Forced vibration analysis of functionally graded carbon nanotube-reinforced composite plates using a numerical strategy. Physica E:Low-Dimensional Systems and Nanostructures, 69, 294-305(2015)
[27] ANSARI, R. and GHOLAMI, R. Nonlinear primary resonance of third-order shear deformable functionally graded nanocomposite rectangular plates reinforced by carbon nanotubes. Composite Structures, 154, 707-723(2016)
[28] GUO, X. and ZHANG, W. Nonlinear vibrations of a reinforced composite plate with carbon nanotubes. Composite Structures, 135, 96-108(2016)
[29] WANG, Z. X. and SHEN, H. S. Nonlinear vibration of nanotube-reinforced composite plates in thermal environments. Computational Materials Science, 50(8), 2319-2330(2011)
[30] ANSARI, R., POURASHRAF, T., GHOLAMI, R., and SHAHABODINI, A. Analytical solution for nonlinear postbuckling of functionally graded carbon nanotube-reinforced composite shells with piezoelectric layers. Composites Part B:Engineering, 90, 267-277(2016)
[31] LEI, Z., ZHANG, L., LIEW, K., and YU, J. Dynamic stability analysis of carbon nanotubereinforced functionally graded cylindrical panels using the element-free kp-Ritz method. Composite Structures, 113, 328-338(2014)
[32] SHEN, H. S. Thermal buckling and postbuckling behavior of functionally graded carbon nanotubereinforced composite cylindrical shells. Composites Part B:Engineering, 43, 1030-1038(2012)
[33] ANSARI, R. and TORABI, J. Numerical study on the buckling and vibration of functionally graded carbon nanotube-reinforced composite conical shells under axial loading. Composites Part B:Engineering, 95, 196-208(2016)
[34] WU, H., YANG, J., and KITIPORNCHAI, S. Nonlinear vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections. Composites Part B:Engineering, 90, 86-96(2016)
[35] WU, H., KITIPORNCHAI, S., and YANG, J. Imperfection sensitivity of thermal post-buckling behaviour of functionally graded carbon nanotube-reinforced composite beams. Applied Mathematical Modelling, 42, 735-752(2017)
[36] WU, H., YANG, J., and KITIPORNCHAI, S. Imperfection sensitivity of postbuckling behaviour of functionally graded carbon nanotube-reinforced composite beams. Thin-Walled Structures, 108, 225-233(2016)
[37] THANG, P. T., NGUYEN, T. T., and LEE, J. A new approach for nonlinear buckling analysis of imperfect functionally graded carbon nanotube-reinforced composite plates. Composites Part B:Engineering, 127, 166-174(2017)
[38] PANC, V. Theories of Elastic Plates, Springer Science & Business Media, London (1975)
[39] REISSNER, E. On transverse bending of plates, including the effect of transverse shear deformation. International Journal of Solids and Structures, 11(5), 569-573(1975)
[40] SHIMPI, R. and PATEL, H. A two variable refined plate theory for orthotropic plate analysis. International Journal of Solids and Structures, 43(22/23), 6783-6799(2006)
[41] REDDY, J. N. Mechanics of Laminated Composite Plates and Shells:Theory and Analysis, CRC Press, Boca Raton (2004)
[42] BOUSAHLA, A. A., BENYOUCEF, S., TOUNSI, A., and MAHMOUD, S. On thermal stability of plates with functionally graded coefficient of thermal expansion. Structural Engineering and Mechanics, 60(2), 313-335(2016)
[43] SONG, Z., ZHANG, L., and LIEW, K. Active vibration control of CNT reinforced functionally graded plates based on a higher-order shear deformation theory. International Journal of Mechanical Sciences, 105, 90-101(2016)
[44] BELLIFA, H., BAKORA, A., TOUNSI, A., BOUSAHLA, A. A., and MAHMOUD, S. An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates. Steel and Composite Structures, 25(3), 257-270(2017)
[45] GHOLAMI, R. and ANSARI, R. A unified nonlocal nonlinear higher-order shear deformable plate model for postbuckling analysis of piezoelectric-piezomagnetic rectangular nanoplates with various edge supports. Composite Structures, 166, 202-218(2017)
[46] ABDELAZIZ, H. H., MEZIANE, M. A. A., BOUSAHLA, A. A., TOUNSI, A., MAHMOUD, S., and ALWABLI, A. S. An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions. Steel and Composite Structures, 25(6), 693-704(2017)
[47] ESAWI, A. M. and FARAG, M. M. Carbon nanotube reinforced composites:potential and current challenges. Materials and Design, 28(9), 2394-2401(2007)
[48] FIDELUS, J., WIESEL, E., GOJNY, F., SCHULTE, K., and WAGNER, H. Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Composites Part A:Applied Science and Manufacturing, 36(11), 1555-1561(2005)
[49] SHEN, H. S. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Composite Structures, 91(1), 9-19(2009)
[50] ANSARI, R. and GHOLAMI, R. Size-dependent nonlinear vibrations of first-order shear deformable magneto-electro-thermo elastic nanoplates based on the nonlocal elasticity theory. International Journal of Applied Mechanics, 8(4), 1650053(2016)
[51] ANSARI, R. and GHOLAMI, R. Surface effect on the large amplitude periodic forced vibration of first-order shear deformable rectangular nanoplates with various edge supports. Acta Astronautica, 118, 72-89(2016)
[52] ANSARI, R., MOHAMMADI, V., SHOJAEI, M. F., GHOLAMI, R., and SAHMANI, S. On the forced vibration analysis of Timoshenko nanobeams based on the surface stress elasticity theory. Composites Part B:Engineering, 60, 158-166(2014)
[53] SHU, C. Differential Quadrature and Its Application in Engineering, Springer Science & Business Media, London (2000)
[54] IBRAHIM, S., PATEL, B., and NATH, Y. Modified shooting approach to the non-linear periodic forced response of isotropic/composite curved beams. International Journal of Non-Linear Mechanics, 44(10), 1073-1084(2009)
[55] KELLER, H. B. Numerical solution of bifurcation and nonlinear eigenvalue problems. Applications of Bifurcation Theory, 38, 359-384(1977)
[56] SHEN, H. S. and ZHANG, C. L. Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates. Materials and Design, 31(7), 3403-3411(2010)
[57] HAN, Y. and ELLIOTT, J. Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Computational Materials Science, 39(2), 315-323(2007)
[58] GRIEBEL, M. and HAMAEKERS, J. Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites. Computer Methods in Applied Mechanics and Engineering, 193(17), 1773-1788(2004)
[59] SELIM, B., ZHANG, L., and LIEW, K. Vibration analysis of CNT reinforced functionally graded composite plates in a thermal environment based on Reddy's higher-order shear deformation theory. Composite Structures, 156, 276-290(2016) |