[1] ABGRALL, R. and SHU, C. W. Handbook of Numerical Methods for Hyperbolic Problems, Cambridge University Press, Cambridge (2016) [2] COLELLA, P. Multidimensional upwind methods for hyperbolic conservation laws. Journal of Computational Physics, 87, 171-200(1990) [3] FEY, M. Multidimensional upwinding, I:the method of transport for solving the Euler equations.Journal of Computational Physics, 143, 159-180(1998) [4] LUKÁČOVÁ-MEDVID'OVÁ, M., MORTON, K., and WARNECKE, G. Evolution Galerkin methods for hyperbolic systems in two space dimensions. Mathematics of Computation of the American Mathematical Society, 69, 1355-1384(2000) [5] MANDAL, J. C. and DESPHANDE, S. M. Higher order accurate kinetic flux vector splitting method for Euler equations. Notes on Numerical Fluid Mechanics, Vieweg+Teubner Verlag, New York (1989) [6] MANDAL, J. C. and DESPHANDE, S. M. Kinetic flux vector splitting for Euler equations. Computers and Fluids, 23, 447-478(1994) [7] XU, K. A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method. Journal of Computational Physics, 171, 289-335(2001) [8] ROE, P. Multidimensional upwinding. Handbook of Numerical Analysis, Elsevier, Amsterdam (2017) [9] STRANG, G. On the construction and comparison of difference schemes. SIAM Journal on Numerical Analysis, 53, 506-517(1998) [10] GOTTLIEB, S. and SHU, C. W. Total variation diminishing Runge-Kutta schemes. Mathematics of Computation, 67, 73-85(1998) [11] WOODWARD, P. and COLELLA, P. The numerical simulation of two-dimensional fluid flow with strong shocks. Journal of Computational Physics, 54, 115-173(1984) [12] JIANG, G. S. and SHU, C. W. Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 126, 202-228(1996) [13] BEN-ARTZI, M. and FALCOVITZ, J. Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge University Press, Cambridge (2003) [14] VAN LEER, B. Towards the ultimate conservative difference scheme, V:a second-order sequel to Godunov's method. Journal of Computational Physics, 32, 101-136(1979) [15] FJORDHOLM, U. and MISHRA, S. Vorticity preserving finite volume schemes for the shallow water equations. SIAM Journal on Scientific Computing, 33, 588-611(2011) [16] LI, J., LUKÁČOVÁ-MEDVID'OVÁ, M., and WARCKE, G. Evolution Galerkin schemes applied to two-dimensional Riemann problems for the wave equation system. Discrete and Continuous Dynamical Systems-A, 9, 559-576(2003) [17] LEE, C. New features of CS solitons and the formation of vortices. Physics Letters A, 247, 397-402(1998) [18] LEE, C. Possible universal transitional scenario in a flat plate boundary layer:measurement and visualization. Physics Letters E, 62, 3659-3671(2000) [19] LEE, C. and FU, S. On the formation of the chain of ring-like vortices in a transitional boundary layer. Experiments in Fluids, 30, 354-357(2003) [20] LEE, C. and WU, J. Transition in wall-bounded flows. Applied Mechanics Reviews, 61, 030802(2008) [21] ZHANG, Y. C. and LI, C. Transition control of Mach 6.5 hypersonic flat plate boundary layer. Applied Mathematics and Mechanics (English Edition), 40(2), 283-292(2019) https://doi.org/10.1007/s10483-019-2423-8 [22] CHEN, X., ZHU, Y., and LEE, C. Interactions between second mode and low-frequency waves in a hypersonic boundary layer. Journal of Fluid Mechanics, 820, 693-735(2017) [23] LEE, C., PENG, H., YUAN, H., WU, J., ZHOU, M., and HUSSAIN, F. Experimental studies of surface waves inside a cylindrical container. Journal of Fluid Mechanics, 677, 39-62(2011) [24] LEVEQUE, R. J. Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge (2002) |