[1] BIRD, G. A. Molecular Gas Dynamics and the Direct Simulation Monte Carlo of Gas Flows, Clarendon Press, Oxford (1994) [2] CHAPMAN, S. and COWLING, T. G. The Mathematical Theory of Non-Uniform Gases:an Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, Cambridge University Press, Cambridge (1970) [3] ABGRALL, R. How to prevent pressure oscillations in multicomponent flow calculations:a quasi conservative approach. Journal of Computational Physics, 125(1), 150-160(1996) [4] FEDKIW, R. P., ASLAM, T., MERRIMAN, B., and OSHER, S. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). Journal of Computational Physics, 152(2), 457-492(1999) [5] SAUREL, R. and ABGRALL, R. A simple method for compressible multifluid flows. SIAM Journal on Scientific Computing, 21(3), 1115-1145(1999) [6] XIAO, T., XU, K., CAI, Q., and QIAN, T. An investigation of non-equilibrium heat transport in a gas system under external force field. International Journal of Heat and Mass Transfer, 126, 362-379(2018) [7] XU, K. Direct Modeling for Computational Fluid Dynamics:Construction and Application of Unified Gas-Kinetic Schemes, World Scientific, Singapore (2015) [8] XU, K. and HUANG, J. C. A unified gas-kinetic scheme for continuum and rarefied flows. Journal of Computational Physics, 229(20), 7747-7764(2010) [9] XIAO, T., CAI, Q., and XU, K. A well-balanced unified gas-kinetic scheme for multi-scale flow transport under gravitational field. Journal of Computational Physics, 332, 475-491(2017) [10] XIAO, T., XU, K., and CAI, Q. A velocity-space adaptive unified gas kinetic scheme for continuum and rarefied flows. arXiv, arXiv:1802.04972v1(2018) https://arxiv.org/abs/1802.04972 [11] BHATNAGAR, P. L., GROSS, E. P., and KROOK, M. A model for collision processes in gases, I, small amplitude processes in charged and neutral one-component systems. Physical Review, 94(3), 511-525(1954) [12] SHAKHOV, E. M. Generalization of the Krook kinetic relaxation equation. Fluid Dynamics, 3(5), 95-96(1968) [13] ANDRIES, P., AOKI, K., and PERTHAME, B. A consistent BGK-type model for gas mixtures. Journal of Statistical Physics, 106(5), 993-1018(2002) [14] LIU, S. and LIANG, Y. Asymptotic-preserving Boltzmann model equations for binary gas mixture. Physical Review E, 93(2), 023102(2016) [15] MORSE, T. F. Energy and momentum exchange between nonequipartition gases. Physics of Fluids, 6(10), 1420-1427(1963) [16] MOUHOT, C. and PARESCHI, L. Fast algorithms for computing the Boltzmann collision operator. Mathematics of Computation, 75(256), 1833-1852(2006) [17] WU, L., ZHANG, J., REESE, J. M., and ZHANG, Y. A fast spectral method for the Boltzmann equation for monatomic gas mixtures. Journal of Computational Physics, 298, 602-621(2015) [18] FILBET, F. and JIN, S. A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. Journal of Computational Physics, 229(20), 7625-7648(2010) [19] LIU, C., XU, K., SUN, Q., and CAI, Q. A unified gas-kinetic scheme for continuum and rarefied flows IV:full Boltzmann and model equations. Journal of Computational Physics, 314, 305-340(2016) [20] KOSUGE, S., AOKI, K., and TAKATA, S. Shock-wave structure for a binary gas mixture:finitedifference analysis of the Boltzmann equation for hard-sphere molecules. European Journal of Mechanics-B/Fluids, 20(1), 87-126(2001) [21] WANG, R. Unified Gas-Kinetic Scheme for the Study of Non-Equilibrium Flows, Ph. D. dissertation, Hong Kong University of Science and Technology (2015) [22] XU, K. BGK-based scheme for multicomponent flow calculations. Journal of Computational Physics, 134(1), 122-133(1997) |