[1] KASTELIC, J., GALESKI, A., and BAER, E. Multicomposite structure of tendon. Connective Tissue Research, 6, 11-23(1978) [2] FAN, J., LIU, J. F., and HE, J. H. Hierarchy of wool fibers and fractal dimensions. International Journal of Nonlinear Sciences and Numerical Simulation, 9, 293-296(2008) [3] YIN, Y. J., YANG, F., LI, Y., and FAN, Q. S. Fractal geometry and topology abstracted from hair fibers. Applied Mathematics and Mechanics (English Edition), 30, 983-990(2009) https://doi.org/10.1007/s10483-009-0804-5 [4] XU, G., GONG, L., YANG, Z., and LIU, X. Y. What makes spider silk fibers so strong? From molecular-crystallite network to hierarchical network structures. Soft Matter, 10, 2116-2123(2014) [5] JI, B. H. and GAO, H. J. Mechanical properties of nanostructure of biological materials. Journal of the Mechanics and Physics of Solids, 52, 1963-1990(2004) [6] PETRUSKA, J. A. and HODGE, A. J. A subunit model for the tropocollagen macromolecule. Proceedings of the National Academy of Sciences, 51, 871-876(1964) [7] FRATZL, P. Cellulose and collagen:from fibres to tissues. Current Opinion in Colloid & Interface Science, 8, 32-39(2003) [8] PUXKANDL, R., ZIZAK, I., PARIS, O., KECKES, J., TESCH, W., BERNSTORFF, S., PURSLOW, P., and FRATZL, P. Viscoelastic properties of collagen:synchrotron radiation investigations and structural model. Philosophical Transactions of the Royal Society B:Biological Sciences, 357, 191-197(2002) [9] FRATZL, P., MISOF, K., ZIZAK, I., RAPP, G., AMENITSCH, H., and BERNSTORFF, S. Fibrillar structure and mechanical properties of collagen. Journal of Structural Biology, 122, 119-122(1998) [10] ELLIOTT, D. M., ROBINSON, P. S., GIMBEL, J. A., SARVER, J. J., ABBOUD, J. A., LOZZO, R. V., and SOSLOWSKY, L. J. Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail tendons. Annals of Biomedical Engineering, 31, 599-605(2003) [11] GUPTA, H. S., SETO, J., KRAUSS, S., BOESECKE, P., and SCREEN, H. R. C. In situ multilevel analysis of viscoelastic deformation mechanisms in tendon collagen. Journal of Structural Biology, 169, 183-191(2010) [12] SHEN, Z. L., KAHN, H., BALLARINI, R., and EPPELL, S. J. Viscoelastic properties of isolated collagen fibrils. Biophysical Journal, 100, 3008-3015(2011) [13] RIGOZZI, S., STEMMER, A., MULLER, R., and SNEDEKER, J. G. Mechanical response of individual collagen fibrils in loaded tendon as measured by atomic force microscopy. Journal of Structural Biology, 176, 9-15(2011) [14] SCREEN, H. R. C. Investigating load relaxation mechanics in tendon. Journal of the Mechanical Behavior of Biomedical Materials, 1, 51-58(2008) [15] SZCZESNY, S. E. and ELLIOTT, D. M. Interfibrillar shear stress is the loading mechanism of collagen fibrils in tendon. Acta Biomaterialia, 10, 2582-2590(2014) [16] SCOTT, J. E. Elasticity in extracellular matrix ‘shape modules’ of tendon, cartilage, etc., a sliding proteoglycan-filament model. The Journal of Physiology, 553, 335-343(2003) [17] GAUTIERI, A., VESENTINI, S., REDAELLI, A., and BUEHLER, M. J. Viscoelastic properties of model segments of collagen molecules. Matrix Biology, 31, 141-149(2012) [18] GLÖCKLE, W. G. and NONNENMACHER, T. F. A fractional calculus approach to self-similar protein dynamics. Biophysical Journal, 68, 46-53(1995) [19] DESERI, L., POLLACI, P., ZINGALES, M., and DAYAL, K. Fractional hereditariness of lipid membranes:instabilities and linearized evolution. Journal of the Mechanical Behavior of Biomedical Materials, 58, 11-27(2016) [20] BATES, J. H. A recruitment model of quasi-linear power-law stress adaptation in lung tissue. Annals of Biomedical Engineering, 35, 1165-1174(2007) [21] DOEHRING, T. C., FREED, A. D., CAREW, E. O., and VESELY, I. Fractional order viscoelasticity of the aortic valve cusp:an alternative to quasilinear viscoelasticity. Journal of Biomechanical Engineering, 127, 700-708(2005) [22] CRAIEM, D., ROJO, F. J., ATIENZA, J. M., ARMENTANO, R. L., and GUINEA, G. V. Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries. Physics in Medicine and Biology, 53, 4543-4554(2008) [23] SCHIESSEL, H. and BLUMEN, A. Hierarchical analogues to fractional relaxation equations. Journal of Physics A:Mathematical and General, 26, 5057-5069(1993) [24] SCHIESSEL, H. and BLUMEN, A. Mesoscopic pictures of the sol-gel transition:ladder models and fractal networks. Macromolecules, 28, 4013-4019(1995) [25] KELLY, J. F. and MCGOUGH, R. J. Fractal ladder models and power law wave equations. The Journal of the Acoustical Society of America, 126, 2072-2081(2009) [26] DESERI, L., DI PAOLA, M., ZINGALES, M., and POLLACI, P. Power-law hereditariness of hierarchical fractal bones. International Journal for Numerical Methods in Biomedical Engineering, 29, 1338-1360(2013) [27] KOBAYASHI, Y., TSUKUNE, M., MIYASHITA, T., and FUJIE, M. G. Simple empirical model for identifying rheological properties of soft biological tissues. Physical Review E, 95, 22418(2017) [28] DI PAOLA, M. and ZINGALES, M. Exact mechanical models of fractional hereditary materials. Journal of Rheology, 56, 983-1004(2012) [29] DI PAOLA, M., PINNOLA, F. P., and ZINGALES, M. Fractional differential equations and related exact mechanical models. Computers and Mathematics with Applications, 66, 608-620(2013) [30] BLAIR, G. W. S. Psychorheology:links between the past and the present. Journal of Texture Studies, 5, 3-12(1974) [31] HU, K. X. and ZHU, K. Q. Mechanical analogies of fractional elements. Chinese Physics Letters, 26, 108301(2009) [32] FUNG, Y. C. Biomechanics:Mechanical Properties of Living Tissues, 2nd ed., Springer-Verlag, New York (1993) [33] CRISCIONE, J., DOUGLAS, A., and HUNTER, W. Physically based strain invariant set for materials exhibiting transversely isotropic behavior. Journal of the Mechanics and Physics of Solids, 49, 871-897(2001) [34] MURPHY, J. G. Transversely isotropic biological soft tissue must be modelled using both anisotropic invariants. European Journal of Mechanics-A/Solids, 42, 90-96(2013) [35] COURANT, R. and HILBERT, D. Methods of Mathematical Physics, John Wiley Sons, Weinheim, Germany, 407-550(2008) [36] MIKUSINSKI, J. Operational Calculus:V.1, 2nd ed., Pergamon Press, Oxford, 1-200(1983) [37] GAUTIERI, A., PATE, M. I., VESENTINI, S., REDAELLI, A., and BUEHLER, M. J. Hydration and distance dependence of intermolecular shearing between collagen molecules in a model microfibril. Journal of Biomechanics, 45, 2079-2083(2012) [38] SZCZESNY, S. E., FETCHKO, K. L., DODGE, G. R., and ELLIOTT, D. M. Evidence that interfibrillar load transfer in tendon is supported by small diameter fibrils and not extrafibrillar tissue components. Journal of Orthopaedic Research:Official Publication of the Orthopaedic Research Society, 35, 2127-2134(2017) [39] STARBORG, T., KALSON, N. S., LU, Y. H., MIRONOV, A., COOTES, T. F., HOLMES, D. F., and KADLER, K. E. Using transmission electron microscopy and 3View to determine collagen fibril size and three-dimensional organization. Nature Protocols, 8, 1433-1448(2013) [40] FESSEL, G. and SNEDEKER, J. G. Evidence against proteoglycan mediated collagen fibril load transmission and dynamic viscoelasticity in tendon. Matrix Biology, 28, 503-510(2009) [41] YIN, L. and ELLIOTT, D. M. A biphasic and transversely isotropic mechanical model for tendon:application to mouse tail fascicles in uniaxial tension. Journal of Biomechanics, 37, 907-916(2004) [42] AHMADZADEH, H., FREEDMAN, B. R., CONNIZZO, B. K., SOSLOWSKY, L. J., and SHENOY, V. B. Micromechanical poroelastic finite element and shear-lag models of tendon predict large strain dependent Poisson's ratios and fluid expulsion under tensile loading. Acta Biomaterialia, 22, 83-91(2015) [43] PODLUBNY, I. Fractional Differential Equations, Academic Press, San Diego, 159-198(1999) [44] YANG, F. and ZHU, K. Q. On the definition of fractional derivatives in rheology. Theoretical and Applied Mechanics Letters, 1, 12007(2011) [45] BABAEI, B., ABRAMOWITCH, S. D., ELSON, E. L., THOMOPOULOS, S., and GENIN, G. M. A discrete spectral analysis for determining quasi-linear viscoelastic properties of biological materials. Journal of the Royal Society Interface, 12, 20150707(2015) [46] GRYTZ, R. and MESCHKE, G. Constitutive modeling of crimped collagen fibrils in soft tissues. Journal of the Mechanical Behavior of Biomedical Materials, 2, 522-533(2009) [47] REESE, S. P., MAAS, S. A., and WEISS, J. A. Micromechanical models of helical superstructures in ligament and tendon fibers predict large Poisson's ratios. Journal of Biomechanics, 43, 1394-1400(2010) [48] PIOLETTI, D. P. and RAKOTOMANANA, L. R. On the independence of time and strain effects in the stress relaxation of ligaments and tendons. Journal of Biomechanics, 33, 1729-1732(2000) [49] SARVER, J. J., ROBINSON, P. S., and ELLIOTT, D. M. Methods for quasi-linear viscoelastic modeling of soft tissue:application to incremental stress-relaxation experiments. Journal of Biomechanical Engineering, 125, 754-758(2003) [50] TROYER, K. L. and PUTTLITZ, C. M. Human cervical spine ligaments exhibit fully nonlinear viscoelastic behavior. Acta Biomaterialia, 7, 700-709(2011) [51] TROYER, K. L. and PUTTLITZ, C. M. Nonlinear viscoelasticity plays an essential role in the functional behavior of spinal ligaments. Journal of Biomechanics, 45, 684-691(2012) [52] LI, S., PATWARDHAN, A. G., AMIROUCHE, F. M. L., HAVEY, R., and MEADE, K. P. Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression. Journal of Biomechanics, 28, 779-790(1995) [53] COWIN, S. and DOTY, S. Tissue Mechanics, Springer, New York, 1-682(2007) [54] KONDRATKO-MITTNACHT, J., DUENWALD-KUEHL, S., LAKES, R., and VANDERBY, R. Shear load transfer in high and low stress tendons. Journal of the Mechanical Behavior of Biomedical Materials, 45, 109-120(2015) [55] BUTERA, S. and DI PAOLA, M. A physically based connection between fractional calculus and fractal geometry. Annals of Physics, 350, 146-158(2014) [56] BAGLEY, R. L. and TORVIK, P. J. Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA Journal, 23, 918-925(1985) [57] FRATZL, P. and WEINKAMER, R. Nature's hierarchical materials. Progress in Materials Science, 52, 1263-1334(2007) [58] ZASIORSKY, V. M. and PRILUTSKY, B. I. Biomechanics of Skeletal Muscles, Human Kinetics, Champaign, IL, 33(2012) [59] HERNÁNDEZ-JIMÉNEZ, A., HERNÁNDEZ-SANTIAGO, J., MACIAS-GARÍA, A., and SÁNCHEZ-GONZÁLEZ, J. Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model. Polymer Testing, 21, 325-331(2002) [60] ZHAO, Y. P. Nano and Mesoscopic Mechanics (in Chinese), Science Press, Beijing, 147-155(2014) [61] GHODSI, H. and DARVISH, K. Investigation of mechanisms of viscoelastic behavior of collagen molecule. Journal of the Mechanical Behavior of Biomedical Materials, 51, 194-204(2015) [62] GAO, J. B. Complex systems and emergence:how theory meets reality. Advances in Mechanics, 43, 359-389(2013) |