[1] BERTRAM, R., BUTTE, M. J., KIEMELl, T., and SHERMAN, A. Topological and phenomenological classification of bursting oscillations. Bulletin of Mathematical Biology, 57(3), 413-439(1995) [2] LV, M., WANG, C. N., REN, G. D., MA, J., and SONG, X. L. Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dynamics, 85(3), 1479-1490(2016) [3] IZHIKEVICH, E. M. Neural excitability, spiking and bursting. International Journal of Bifurcation and Chaos, 10(6), 1171-1266(2000) [4] WU, H. G., BAO, B. C., LIU, Z., XU, Q., and JIANG, P. Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator. Nonlinear Dynamics, 83(1/2), 893-903(2016) [5] RULKOV, N. F. Regularization of synchronized chaotic bursts. Physical Review Letters, 86(1), 183(2001) [6] NAYFEH, A. H. and BALACHANDRAN, B. Applied Nonlinear Dynamics, John Wiley & Sons, New York (1995) [7] ZHANG, H., CHEN, D. Y., XU, B. B., WU, C. Z., and WANG, X. Y. The slow-fast dynamical behaviors of a hydro-turbine governing system under periodic excitations. Nonlinear Dynamics, 87(4), 2519-2528(2017) [8] YANG, S. P., CHEN, L. Q., and LI, S. H. Dynamics of Vehicle-Road Coupled System, Science Press, Beijing (2015) [9] LI, X. H. and HOU, J. Y. Bursting phenomenon in a piecewise mechanical system with parameter perturbation in stiffness. International Journal of Non-Linear Mechanics, 81, 165-176(2016) [10] BI, Q. S. The mechanism of bursting phenomena in Belousov-Zhabotinsky (BZ) chemical reaction with multiple time scales. SCIENCE CHINA Technological Sciences, 53(3), 748-760(2010) [11] BERTRAM, R., SMOLEN, P., SHERMAN, A., MEARS, D., and ATWATER, I. A role for calcium release-activated current (CRAC) in cholinergic modulation of electrical activity in pancreatic beta-cells. Biophysical Journal, 68(6), 2323-2332(1995) [12] BUTERA, R. J., JR, RINZEL, J., and SMITH, J. C. Models of respiratory rhythm generation in the pre-Bötzinger complex, I:bursting pacemaker neurons. Journal of Neurophysiology, 82(1), 382-397(1999) [13] KEPECS, A. and WANG, X. J. Analysis of complex bursting in cortical pyramidal neuron models. Neurocomputing, 32, 181-187(2000) [14] LAJOIE, G. and SHEA-BROWN, E. Shared inputs, entrainment, and desynchrony in elliptic bursters:from slow passage to discontinuous circle maps. SIAM Journal on Applied Dynamical Systems, 10(4), 1232-1271(2011) [15] DESTEXHE, A., MCCORMICK, D. A., and SEJNOWSKI, T. J. A model for 8-10 Hz spindling in interconnected thalamic relay and reticularis neurons. Biophysical Journal, 65(6), 2473-2477(1993) [16] RINZEL, J. and LEE, Y. S. Dissection of a model for neuronal parabolic bursting. Journal of Mathematical Biology, 25(6), 653-675(1987) [17] THEODORE, V., MARK, K. A., and TASSO, K. J. Amplitude-modulated bursting:a novel class of bursting rhythms. Physical Review Letters, 117(26), 268101(2016) [18] HAN, X., BI, Q., and KURTHS, J. Route to bursting via pulse-shaped explosion. Physical Review E, 98(1), 010201(2018) [19] WANG, J., LU, B., LIU, S. Q., and JIANG, X. F. Bursting types and bifurcation analysis in the pre-Bötzinger complex respiratory rhythm neuron. International Journal of Bifurcation and Chaos, 27(1), 1750010(2017) [20] BARRIO, R., RODRIGUEZ, M., SERRANO, S., and SHILNIKOV, A. Mechanism of quasiperiodic lag jitter in bursting rhythms by a neuronal network. Europhysics Letters, 112(3), 38002(2015) [21] DESROCHES, M., GUILLAMON, A., PONCE, E., PROHENS, R., RODRIGUES, S., and TERUEL, A. E. Canards, folded nodes, and mixed-mode oscillations in piecewise-linear slowfast systems. SIAM Review, 58(4), 653-691(2016) [22] AMBROSIO, B., AZIZ-ALAOUI, M. A., and YAFIA, R. Canard phenomenon in a slow-fast modified Leslie-Gower model. Mathematical Biosciences, 295, 48-54(2018) [23] VO, T. Generic torus canards. Physica D:Nonlinear Phenomena, 356, 37-64(2017) [24] MASLENNIKOV, O. V., NEKORKIN, V. I., and KURTHS, J. Basin stability for burst synchronization in small-world networks of chaotic slow-fast oscillators. Physical Review E, 92(4), 042803(2015) [25] YU, Y., GAO, Y. B., HAN, X. J., and BI, Q. S. Modified function projective bursting synchronization for fast-slow systems with uncertainties and external disturbances. Nonlinear Dynamics, 79(4), 2359-2369(2015) [26] MBÉ, J. H. T., TALLA, A. F., CHENGUI, G. R. G., COILLET, A., LARGER, L., WOAFO, P., and CHEMBO, Y. K. Mixed-mode oscillations in slow-fast delayed optoelectronic systems. Physical Review E, 91(1), 012902(2015) [27] HAN, X. J., BI, Q. S., ZHANG, C., and YU, Y. Delayed bifurcations to repetitive spiking and classification of delay-induced bursting. International Journal of Bifurcation and Chaos, 24(7), 1450098(2014) [28] STRIZHAK, P. E. and KAWCZYNSKI, A. L. Regularities in complex transient oscillations in the Belousov-Zhabotinsky reaction in a batch reactor. Journal of Physical Chemistry, 99(27), 10830-10833(1995) [29] PEDREÑO, S., PISCO, J. P., LARROUY-MAUMUS, G., KELLY, G., and DE CARVALHO, L. P. S. Mechanism of feedback allosteric inhibition of ATP phospho ribosyl transferase. Biochemistry, 51(40), 8027-8038(2012) [30] PASE, L., LAYTON, J. E., WITTMANN, C., ELLETT, F., NOWELL, C. J., ROGERS, K. L., HALL, C. J., and KEIGHTLEY, M. C. Neutrophil-delivered myelo peroxidase dampens the hydrogen peroxide burst after tissue wounding in zebra fish. Current Biology, 22(19), 1818-1824(2012) [31] HOFBAUER, S., BELLEI, M., SÜDERMANN, A., PIRKER, K. F., DAIMS, H., FURTMÜLLER, P. G., and DJINOVIĆ-CARUGO, K. Redox thermodynamics of high-spin and low-spin forms of chlorite dismutases with diverse subunit and oligomeric structures. Biochemistry, 51(47), 9501-9512(2012) [32] LASHINA, E. A., CHUMAKOVA, N. A., CHUMAKOV, G. A., and BORONIN, A. I. Chaotic dynamics in the three-variable kinetic model of CO oxidation on platinum group metals. Chemical Engineering Journal, 154(1-3), 82-87(2009) [33] CADENA, A., BARRAGÁN, D., and ÁGREDA, J. Bursting in the Belousov-Zhabotinsky reaction added with phenol in a batch reactor. Journal of the Brazilian Chemical Society, 24(12), 2028-2032(2013) [34] XU, J., MIAO, Y., and LIU, J. C. Strong averaging principle for slow-fast SPDEs with Poisson random measures. Discrete and Continuous Dynamical Systems-Series B, 20, 2233-2256(2015) [35] CERRAI, S. and LUNARDI, A. Averaging principle for nonautonomous slow-fast systems of stochastic reaction-diffusion equations:the almost periodic case. SIAM Journal on Mathematical Analysis, 49(4), 2843-2884(2017) [36] KOKOTOVIC, P., KHALI, H. K., and O'REILLY, J. Singular Perturbation Methods in Control:Analysis and Design, Academic Press, Orlando (1999) [37] GUCKENHEIMER, J., HOFFMAN, K., and WECKESSER, W. The forced van der Pol equation I:the slow flow and its bifurcations. SIAM Journal on Applied Dynamical Systems, 2(1), 1-35(2003) [38] GLIZER, V. Y., FEIGIN, Y., FRIDMAN, E., and MARGALIOT, M. A new approach to exact slow-fast decomposition of singularly perturbed linear systems with small delays. 53rd IEEE Conference on Decision and Control, IEEE, Los Angeles, 451-456(2014) [39] FARAZMAND, M. and SAPSIS, T. P. Dynamical indicators for the prediction of bursting phenomena in high-dimensional systems. Physical Review E, 94(3), 032212(2016) [40] TZOU, J. C., WARD, M. J., and KOLOKOLNIKOV, T. Slowly varying control parameters, delayed bifurcations, and the stability of spikes in reaction-diffusion systems. Physica D:Nonlinear Phenomena, 290, 24-43(2015) [41] WIGGINS, S. and SHAW, S. W. Chaos and three-dimensional horseshoes in slowly varying oscillators. Journal of Applied Mechanics, 55(4), 959-968(1988) [42] NAYFEH, A. H. and MOOK, D. T. Nonlinear Oscillations, John Wiley & Sons, New York (1979) [43] PAPANGELO, A. and CIAVARELLA, M. On the limits of quasi-static analysis for a simple Coulomb frictional oscillator in response to harmonic loads. Journal of Sound and Vibration, 339, 280-289(2015) [44] DING, H., HUANG, L. L., MAO, X. Y., and CHEN, L. Q. Primary resonance of a traveling viscoelastic beam under internal resonance. Applied Mathematics and Mechanics (English Edition), 38(1), 1-14(2017) https://doi.org/10.1007/s10483-016-2152-6 [45] DING, H., ZHU, M. H., and CHEN, L. Q. Dynamic stiffness method for free vibration of an axially moving beam with generalized boundary conditions. Applied Mathematics and Mechanics (English Edition), 40(7), 911-924(2019) https://doi.org/10.1007/s10483-019-2493-8 |