[1] STONE, H. A., STROOCK, A. D., and AJDARI, A. Engineering flows in small devices:microfluidics toward a lab-on-a-chip. Annual Review of Fluid Mechanics, 36(36), 381-411(2004) [2] SARKAR, S. and GANGULY, S. Characterization of electromagnetohydrodynamic transport of power law fluids in microchannel. Journal of Non-Newtonian Fluid Mechanics, 250, 18-30(2017) [3] KLEINSTREUER, C., JIE, L., and JUNEMO, K. Microfluidics of nano-drug delivery. International Journal of Heat and Mass Transfer, 51(23), 5590-5597(2008) [4] KHAN, I. U., SERRA, C. A., ANTON, N., and VANDAMMEA, T. Microfluidics:a focus on improved cancer targeted drug delivery systems. Journal of Controlled Release, 172(3), 1065-1074(2013) [5] MANSOURI, A., BHATTACHARJEE, S., and KOSTIUK, L. High-power electro kinetic energy conversion in a glass microchannel array. Lab on a Chip, 12(20), 4033-4036(2012) [6] LIU, Y. Z., KIM, B. J., and SUNG, H. J. Two-fluid mixing in a microchannel. International Journal of Heat and Fluid Flow, 25(6), 986-995(2004) [7] WEILIN, Q., MALA, G. M., and LI, D. Q. Pressure-driven water flows in trapezoidal silicon microchannels. International Journal of Heat and Mass Transfer, 43(3), 353-364(2000) [8] CHANDA, S., SINHA, S., and DAS, S. Streaming potential and electroviscous effects in soft nanochannels:towards designing more efficient nanofluidic electrochemomechanical energy converters. Soft Matter, 10(38), 7558-7568(2014) [9] DAS, S. and CHAKRABORTY, S. Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid. Analytica Chimica Acta, 559(1), 15-24(2006) [10] TSAO, H. K. Electroosmotic flow through an annulus. Journal of Colloid and Interface Science, 225(1), 247-250(2000) [11] TAN, Z., QI, H. T., and JIANG, X. Y. Electroosmotic flow of Eyring fluid in slit microchannel with slip boundary condition. Applied Mathematics and Mechanics (English Edition), 35(6), 689-696(2014) https://doi.org/10.1007/s10483-014-1822-6 [12] WANG, C. Y., LIU, Y. H., and CHANG, C. C. Analytical solution of electro-osmotic flow in a semicircular microchannel. Physics of Fluids, 20(6), 063105(2008) [13] DING, Z. D., JIAN, Y. J., and YANG, L. G. Time periodic electroosmotic flow of micropolar fluids through microparallel channel. Applied Mathematics and Mechanics (English Edition), 37(6), 769-786(2016) https://doi.org/10.1007/s10483-016-2081-6 [14] WANG, X., CHEN, B., and WU, J. A semianalytical solution of periodical electro-osmosis in a rectangular microchannel. Physics of Fluids, 19(12), 127101(2007) [15] QI, C. and NG, C. O. Rotating electroosmotic flow of viscoplastic material between two parallel plates. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 513, 355-366(2017) [16] QI, C. and NG, C. O. Electroosmotic flow of a power-law fluid in a slit microchannel with gradually varying channel height and wall potential. European Journal of Mechanics-B/Fluids, 52, 160-168(2015) [17] LEMOFF, A. V. and LEE, A. P. An AC magnetohydrodynamic micropump. Sensors and Actuators B:Chemical, 63(3), 178-185(2000) [18] SHEIKHOLESLAMI, M. and BHATTI, M. M. Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles. International Journal of Heat and Mass Transfer, 111, 1039-1049(2017) [19] DANIEL, Y. S., AZIZ, Z. A., ISMAIL, Z., and SALAH, F. Slip effects on electrical unsteady MHD natural convection flow of nanofluid over a permeable shrinking sheet with thermal radiation. Engineering Letters, 26(1), 107-116(2018) [20] JANG, J. and LEE, S. S. Theoretical and experimental study of MHD (magnetohydrodynamic) micropump. Sensors and Actuators A:Physical, 80(1), 84-89(2000) [21] CHAKRABORTY, S. and PAUL, D. Microchannel flow control through a combined electromagnetohydrodynamic transport. Journal of Physics D:Applied Physics, 39(24), 5364-5371(2006) [22] DAS, S., MITRA, S. K., and CHAKRABORTY, S. Ring stains in the presence of electromagnetohydrodynamic interactions. Physical Review E, 86(5), 056317(2012) [23] ESCANDON, J., SANTIAGO, F., BAUTISTA, O., and MENDEZ, F. Hydrodynamics and thermal analysis of a mixed electromagnetohydrodynamic-pressure driven flow for Phan-Thien-Tanner fluids in a microchannel. International Journal of Thermal Sciences, 86, 246-257(2014) [24] WEIGL, B. H., BARDELL, R. L., and CABRERA, C. R. Lab-on-a-chip for drug development. Advanced Drug Delivery Reviews, 55(3), 349-377(2003) [25] ARIS, R. On the dispersion of a solute in pulsating flow through a tube. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 259(1298), 370-376(1960) [26] WATSON, E. J. Diffusion in oscillatory pipe flow. Journal of Fluid Mechanics, 133, 233-244(1983) [27] JOSHI, C. H., KAMM, R. D., DRAZEN, J. M., and SLUTSKY, A. S. An experimental study of gas exchange in laminar oscillatory flow. Journal of Fluid Mechanics, 133, 245-254(2006) [28] JAEGER, M. J. and KURZWEG, U. H. Determination of the longitudinal dispersion coefficient in flows subjected to high-frequency oscillations. Physics of Fluids, 26(6), 1380-1382(1983) [29] MANOPOULOS, C. and TSANGARIS, S. Enhanced diffusion for oscillatory viscoelastic flow. Physica Scripta, 89(8), 085206(2014) [30] ZHOU, Q. and NG, C. O. Electro-osmotic dispersion in a circular tube with slip-stick striped wall. Fluid Dynamics Research, 47(1), 015502(2014) [31] NG, C. O. and CHEN, B. Dispersion in electro-osmotic flow through a slit channel with axial step changes of zeta potential. Journal of Fluids Engineering, 135(10), 101203(2013) [32] NG, C. O. and ZHOU, Q. Dispersion due to electroosmotic flow in a circular microchannel with slowly varying wall potential and hydrodynamic slippage. Physics of Fluids, 24(11), 112002(2012) [33] JIE, S., NG, C. O., and ADRIAN, W. K. Dispersion in oscillatory electro-osmotic flow through a parallel-plate channel with kinetic sportive exchange at walls. Journal of Hydrodynamics, 26(3), 363-373(2014) [34] ARCOS, J. C., MÉNDEZ, F., BAUTISTA, E. G., and BAUTISTA, O. Dispersion coefficient in an electro-osmotic flow of a viscoelastic fluid through a microchannel with a slowly varying wall zeta potential. Journal of Fluid Mechanics, 839, 348-386(2018) [35] HUANG, H. F. and LAI, C. L. Enhancement of mass transport and separation of species by oscillatory electroosmotic flows. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 462(2071), 2017-2038(2006) [36] RAMON, G., AGNON, Y., and DOSORETZ, C. Solute dispersion in oscillating electro-osmotic flow with boundary mass exchange. Microfluidics and Nanofluidics, 10(1), 97-106(2011) [37] RAMON, G. Z. Solute transport under oscillating electro-osmotic flow in a closed-ended cylindrical pore. Journal of Engineering Mathematics, 110(1), 195-205(2018) [38] LI, H. C. and JIAN, Y. J. Dispersion for periodic electro-osmotic flow of Maxwell fluid through a microtube. International Journal of Heat Mass Transfer, 115, 703-713(2017) [39] MEDINA, I., TOLEDO, M., MENDEZ, F., and BAUTISTA, O. Pulsatile electroosmotic flow in á microchannel with asymmetric wall zeta potentials and its effect on mass transport enhancement and mixing. Chemical Engineering Science, 184, 259-272(2018) [40] MUÑOZ, J., ARCOS, J., BAUTISTA, O., and MÉNDEZ, F. Slippage effect on the dispersion coefficient of a passive solute in a pulsatile electro-osmotic flow in a microcapillary. Physical Review Fluids, 3, 084503(2018) [41] TEODORO, C., BAUTISTA, O., and MÉNDEZ, F. Mass transport and separation of species in an oscillating electro-osmotic flow caused by distinct periodic electric fields. Physica Scripta, 94(11), 115012(2019) [42] PERALTA, M., ARCOS, J., MENDEZ, F., and BAUTISTA, O. Mass transfer through á concentric-annulus microchannel driven by an oscillatory electroosmotic flow of a Maxwell fluid. Journal of Non-Newtonian Fluid Mechanics, 279, 104281(2020) [43] ZHAO, J., ZHENG, L., ZHANG, X., and LIU, F. Convection heat and mass transfer of fractional MHD Maxwell fluid in a porous medium with Soret and Dufour effects. International Journal of Heat Mass Transfer, 103, 203-210(2016) [44] SRINIVAS, S. and KOTHANDAPANI, M. The influence of heat and mass transfer on MHD peristaltic flow through a porous space with compliant walls. Applied Mathematics and Computation, 213(1), 197-208(2009) [45] VARGAS, C., BAUTISTA, O., ARCOS, J., and MENDEZ, F. Hydrodynamic dispersion in a combined magnetohydrodynamic-electroosmotic-driven flow through a microchannel with slowly varying wall zeta potentials. Physics of Fluids, 29(9), 0922002(2017) [46] ORTIZ-PEREZ, A. S., GARCIA-ANGEL, V., ACUNA-RAMIREZ, A., VARGAS-OSUNA, L., PEREZ-BARRERA, E. J., and CUEVAS, S. Magnetohydrodynamic flow with slippage in an annular duct for microfluidic applications. Microfluidics and Nanofluidics, 21(8), 138(2017) [47] VALENZUELA-DELGADO, M., FLORES-FUENTES, W., RIVAS-LOPEZ, M., SERGIYENKO, O., LINDNER, L., HERNANDEZ-BALBUENA, D., and RODRIGUEZ-QUINONEZ, J. C. Electrolyte magnetohydrodynamic flow sensing in an open annular channel-a vision system for validation of the mathematical model. Sensors, 18(6), 1683(2018) [48] NOROUZI, M., VAMERZANI, B. Z., DAVOODI, M., BIGLARI, N., and SHAHMARDAN, M. M. An exact analytical solution for creeping Dean flow of Bingham plastics through curved rectangular ducts. Rheologica Acta, 54(5), 391-402(2015) [49] DEHARO, M. L., DELRIO, J. A., and WHITAKER, S. Flow of Maxwell fluids in porous media. Transport in Porous Media, 25(2), 167-192(1996) [50] SAUER. T. Numerical Analysis, 2nd ed., Pearson Education Inc., New York, 399-401(2012) [51] BANDOPADHYAY, A. and CHAKRABORTY, S. Giant augmentations in electro-hydro-dynamic energy conversion efficiencies of nanofluidic devices using viscoelastic fluids. Applied Physics Letters, 101(4), 043905(2012) [52] LIU, Y. P., JIAN, Y. J., LIU, Q. S., and LI, F. Q. Alternating current magnetohydrodynamic electroosmotic flow of Maxwell fluids between two micro-parallel plates. Journal of Molecular Liquids, 211, 784-791(2015) [53] RIVERO, M. and CUEVAS, S. Analysis of the slip condition in magnetohydrodynamic (MHD) micropumps. Sensors and Actuators B:Chemical, 166, 884-892(2012) [54] ZHAO, G. P., JIAN, Y. J., CHANG, L., and BUREN, M. D. L. Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field. Journal of Magnetism and Magnetic Materials, 387, 111-117(2015) |