[1] YOUNIS, M. I. MEMS Linear and Nonlinear Statics and Dynamics, Springer, New York (2011) [2] YOUNIS, M. I., OUAKAD, H. M., ALSALEEM, F., MILES, M. R., and WEILI, C. Nonlinear dynamics of MEMS arches under harmonic electrostatic actuation. Journal of Microelectromechanical Systems, 19, 647-656(2010) [3] ZHANG, Y., WANG, Y., LI, Z., HUANG, Y., and LI, D. Snap-through and pull-in instabilities of an arch-shaped beam under an electrostatic loading. Journal of Microelectromechanical Systems, 16, 684-693(2007) [4] KRYLOV, S., BOJAN, R. I., DAVID, S., SHIMON, S., and HAROLD, C. The pull-in behavior of electrostatically actuated bistable microstructures. Journal of Micromechanics and Microengineering, 18, 055026(2008) [5] DAS, K. and BATRA, R. C. Pull-in and snap-through instabilities in transient deformations of microelectromechanical systems. Journal of Micromechanics and Microengineering, 19, 035008(2009) [6] DAS, K. and BATRA, R. C. Instabilites in Arch Shaped MEMS, Springer, Heidelberg, 147-155(2010) [7] CHEN, X. and MEGUID, S. A. On the parameters which govern the symmetric snap-through buckling behavior of an initially curved microbeam. International Journal of Solids and Structures, 66, 77-87(2015) [8] MEDINA, L., GILAT, R., and KRYLOV, S. Symmetry breaking in an initially curved pre-stressed micro beam loaded by a distributed electrostatic force. International Journal of Solids and Structures, 51, 2047-2061(2014) [9] FAROKHI, H., GHAYESH, M. H., and HUSSAIN, S. Pull-in characteristics of electrically actuated MEMS arches. Mechanism and Machine Theory, 98, 133-150(2016) [10] OUAKAD, H. M. and YOUNIS, M. I. The dynamic behavior of MEMS arch resonators actuated electrically. International Journal of Non-Linear Mechanics, 45, 704-713(2010) [11] RUZZICONI, L., BATAINEH, A. M., YOUNIS, M. I., CUI, W., and LENCI, S. Nonlinear dynamics of an electrically actuated imperfect microbeam resonator:experimental investigation and reduced-order modeling. Journal of Micromechanics and Microengineering, 23, 075012(2013) [12] KRYLOV, S. and DICK, N. Dynamic stability of electrostatically actuated initially curved shallow micro beams. Continuum Mechanics and Thermodynamics, 22, 445-468(2010) [13] ABDALLAH, R., MOHAMMED, L. F. B., MD ABDULLAH AL, H., and MOHAMMAD, I. Y. Experimental investigation of snap-through motion of in-plane MEMS shallow arches under electrostatic excitation. Journal of Micromechanics and Microengineering, 26, 015012(2016) [14] TAJADDODIANFAR, F., NEJAT PISHKENARI, H., HAIRI YAZDI, M. R., and MAANI MIANDOAB, E. On the dynamics of bistable micro/nano resonators:analytical solution and nonlinear behavior. Communications in Nonlinear Science and Numerical Simulation, 20, 1078-1089(2015) [15] FLECK, N. A., MULLER, G. M., ASHBY, M. F., and HUTCHINSON, J. W. Strain gradient plasticity:theory and experiment. Acta Metallurgica et Materialia, 42, 475-487(1994) [16] STÖLKEN, J. S. and EVANS, A. G. A microbend test method for measuring the plasticity length scale. Acta Materialia, 46, 5109-5115(1998) [17] ANDREW, W. M. and JONATHAN, S. C. Role of material microstructure in plate stiffness with relevance to microcantileverg sensors. Journal of Micromechanics and Microengineering, 15, 1060-1067(2005) [18] RAHAEIFARD, M., KAHROBAIYAN, M. H., AHMADIAN, M. T., and FIROOZBAKHSH, K. Size-dependent pull-in phenomena in nonlinear microbridges. International Journal of Mechanical Sciences, 54, 306-310(2012) [19] RAHAEIFARD, M., AHMADIAN, M. T., and FIROOZBAKHSH, K. Vibration analysis of electrostatically actuated nonlinear microbridges based on the modified couple stress theory. Applied Mathematical Modelling, 39, 6694-6704(2015) [20] NIKPOURIAN, A., GHAZAVI, M. R., and AZIZI, S. On the nonlinear dynamics of a piezoelectrically tuned micro-resonator based on non-classical elasticity theories. International Journal of Mechanics and Materials in Design, 14, 1-19(2016) [21] HUU-TAI, T., THUC, P. V., TRUNG-KIEN, N., and SEUNG-EOCK, K. A review of continuum mechanics models for size-dependent analysis of beams and plates. Composite Structures, 177, 196-219(2017) [22] SHOJAEIAN, M., TADI BENI, Y., and ATAEI, H. Size-dependent snap-through and pull-in instabilities of initially curved pre-stressed electrostatic nano-bridges. Journal of Physics D:Applied Physics, 49, 295303(2016) [23] GHAYESH, M. H., FAROKHI, H., and ALICI, G. Size-dependent electro-elasto-mechanics of MEMS with initially curved deformable electrodes. International Journal of Mechanical Sciences, 103, 247-264(2015) [24] GHAYESH, M. H. and FAROKHI, H. Bistable nonlinear response of MEMS resonators. Nonlinear Dynamics, 90, 1627-1645(2017) [25] NIKPOURIAN, A., GHAZAVI, M. R., and AZIZI, S. Size-dependent secondary resonance of a piezoelectrically laminated bistable MEMS arch resonator. Composites Part B:Engineering, 173, 106850(2019) [26] TAJADDODIANFAR, F., PISHKENARI, H. N., YAZDI, M. R. H., and MIANDOAB, E. M. Size-dependent bistability of an electrostatically actuated arch NEMS based on strain gradient theory. Journal of Physics D:Applied Physics, 48, 245503(2015) [27] PRADIPTYA, I. and OUAKAD, H. M. Size-dependent behavior of slacked carbon nanotube actuator based on the higher-order strain gradient theory. International Journal of Mechanics and Materials in Design, 14, 393-415(2018) [28] YOUNIS, M. I. and NAYFEH, A. H. A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dynamics, 31, 91-117(2003) [29] POURKIAEE, S. M., KHADEM, S. E., SHAHGHOLI, M., and BAB, S. Nonlinear modal interactions and bifurcations of a piezoelectric nanoresonator with three-to-one internal resonances incorporating surface effects and van der Waals dissipation forces. Nonlinear Dynamics, 88, 1785-1816(2017) [30] LI, L., ZHANG, Q., WANG, W., and HAN, J. Nonlinear coupled vibration of electrostatically actuated clamped-clamped microbeams under higher-order modes excitation. Nonlinear Dynamics, 90, 1593-1606(2017) [31] FAROKHI, H. and GHAYESH, M. H. Nonlinear size-dependent dynamics of microarches with modal interactions. Journal of Vibration and Control, 22, 3679-3689(2015) [32] GHAYESH, M. H. and FAROKHI, H. Internal energy transfer in dynamical behaviour of Timoshenko microarches. Mathematics and Computers in Simulation, 112, 28-39(2015) [33] RAMINI, A. H., HAJJAJ, A. Z., and YOUNIS, M. I. Tunable resonators for nonlinear modal interactions. Scientific Reports, 6, 34717(2016) [34] OUAKAD, H. M., SEDIGHI, H. M., and YOUNIS, M. I. One-to-one and three-to-one internal resonances in MEMS shallow arches. Journal of Computational and Nonlinear Dynamics, 12, 051025(2017) [35] LAM, D. C. C., YANG, F., CHONG, A. C. M., WANG, J., and TONG, P. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 51, 1477-1508(2003) [36] REZAZADEH, G., TAHMASEBI, A., and ZUBSTOV, M. Application of piezoelectric layers in electrostatic MEM actuators:controlling of pull-in voltage. Microsystem Technologies, 12, 1163-1170(2006) [37] NIKPOURIAN, A., GHAZAVI, M. R., and AZIZI, S. Size-dependent nonlinear behavior of a piezoelectrically actuated capacitive bistable microstructure. International Journal of Non-Linear Mechanics, 114, 49-61(2019) [38] NAYFEH, A. H. and EMAM, S. A. Exact solution and stability of postbuckling configurations of beams. Nonlinear Dynamics, 54, 395-408(2008) [39] EL-BASSIOUNY, A. F. Structural modal interactions with internal resonances and external excitation. Physica Scripta, 72, 132-141(2005) [40] NAYFEH, A. H. Introduction to Perturbation Techniques, John Wiley & Sons, New York (2011) [41] AZIZI, S., GHAZAVI, M. R., REZAZADEH, G., AHMADIAN, I., and CETINKAYA, C. Tuning the primary resonances of a micro resonator, using piezoelectric actuation. Nonlinear Dynamics, 76, 839-852(2014) |