[1] CURRAN, E. T., HEISER, W. H., and PRATT, D. T. Fluid phenomena in scramjet combustion systems. Annual Review of Fluid Mechanics, 28(1), 323-360(1996) [2] MARBLE, F. E. Growth of a diffusion flame in the field of a vortex. Recent Advances in the Aerospace Sciences, Springer, Boston, 395-413(1985) [3] VAN LERBERGHE, W. M., SANTIAGO, J. G., DUTTON, J. C., and LUCHT, R. P. Mixing of a sonic transverse jet injected into a supersonic flow. AIAA Journal, 38(3), 470-479(2000) [4] KNOWLES, K. and SADDINGTON, A. J. A review of jet mixing enhancement for aircraft propulsion applications. Proceedings of the Institution of Mechanical Engineers, 220(2), 103-127(2006) [5] BOURDON, C. J. and DUTTON, J. C. Mixing enhancement in compressible base flows via generation of streamwise vorticity. AIAA Journal, 39(8), 1633-1635(1996) [6] SMITH, L. L., MAJAMAKI, A. J., and LAM, I. T. Mixing enhancement in a lobed injector. Physics of Fluids, 9(3), 667-678(1997) [7] HIEJIMA, T. and ODA, T. Shockwave effects on supersonic combustion using hypermixer struts. Physics of Fluids, 32(1), 016104(2020) [8] VERGINE, F., CRISANTI, M., and MADDALENA, L. Supersonic combustion of pylon-injected hydrogen in high-Enthalpy flow with imposed vortex dynamics. Journal of Propulsion and Power, 31(1), 89-103(2014) [9] VERGINE, F. and MADDALENA, L. Study of two supersonic streamwise vortex interactions in a mach 2.5 flow: merging and no merging configurations. Physics of Fluids, 27(7), 076102(2015) [10] LEWEKE, T., DIZES, S. L., and WILLIAMSON, C. H. K. Dynamics and instabilities of vortex pairs. Annual Review of Fluid Mechanics, 48, 507-541(2016) [11] SAFFMAN, P. G. and SZETO, R. Equilibrium shapes of a pair of equal uniform vortices. Physics of Fluids, 23(12), 2339(1980) [12] MEUNIER, P., EHRENSTEIN, U., and LEWEKE, T. A merging criterion for two-dimensional co-rotating vortices. Physics of Fluids, 14(8), 2757(2002) [13] CERRETELLI, C. and WILLIAMSON, C. H. K. The physical mechanism for vortex merging. Journal of Fluid Mechanics, 475, 41-77(2003) [14] DIZES, S. L. and VERGA, A. Viscous interactions of two co-rotating vortices before merging. Journal of Fluid Mechanics, 467, 389-410(2002) [15] MELANDER, M. V., MCWILLIAMS, J. C., and ZABUSKY, N. J. Axisymmetrization and vorticity-gradient intensification of an isolated two-dimensional vortex through filamentation. Journal of Fluid Mechanics, 178, 137-159(1987) [16] MELANDER, M. V., ZABUSKY, N. J., and MCWILLIAMS, J. C. Symmetric vortex merger in two dimensions — causes and conditions. Journal of Fluid Mechanics, 195, 303-340(1988) [17] QIN, S., LIU, H., and XIANG, Y. On the formation modes in vortex interaction for multiple co-axial co-rotating vortex rings. Physics of Fluids, 30(1), 011901(2018) [18] HUANG, H. M. and XU, X. L. Simulation on motion of particles in vortex merging process. Applied Mathematics and Mechanics (English Edition), 31(4), 461-470(2010) https://doi.org/10.1007/s10483-010-0406-x [19] BRANDT, L. K. and NOMURA, K. K. The physics of vortex merger: further insight. Physics of Fluids, 18(5), 051701(2006) [20] VILLERMAUX, E. Mixing versus stirring. Annual Review of Fluid Mechanics, 51, 245-273(2019) [21] TOMKINS, C., KUMAR, S., ORLICZ, G., and PRESTRIDGE, K. An experimental investigation of mixing mechanisms in shock-accelerated flow. Journal of Fluid Mechanics, 611, 131150(2008) [22] CETEGEN, B. M. and MOHAMAD, N. Experiments on liquid mixing and reaction in a vortex. Journal of Fluid Mechanics, 249, 391-414(1993) [23] MEUNIER, P. and VILLERMAUX, E. How vortices mix. Journal of Fluid Mechanics, 476, 213-222(2003) [24] KUMAR, S., ORLICZ, G., and TOMKINS, C. Stretching of material lines in shock-accelerated gaseous flows. Physics of Fluids, 17(8), 082107(2005) [25] SOULOPOULOS, N., HARDALUPAS, Y., and TAYLOR, A. Mixing and scalar dissipation rate statistics in a starting gas jet. Physics of Fluids, 27(12), 125103(2015) [26] MADDALENA, L., VERGINE, F., and CRISANTI, M. Vortex dynamics studies in supersonic flow: merging of co-rotating streamwise vortices. Physics of Fluids, 26(4), 046101(2014) [27] YU, B., HE, M., and ZHANG, B. Two-stage growth mode for lift-off mechanism in oblique shock-wave/jet interaction. Physics of Fluids, 32, 116105(2020) [28] PLATTEN, J. K. The soret effect: a review of recent experimental results. Journal of Applied Mechanics, 73(1), 5-15(2006) [29] ERN, A. and GIOVANGIGLI, V. Multicomponent Transport Algorithms, Springer, Berlin/Heidelberg (1994) [30] KEE, R., COLTRIN, M. E., and GLARBORG, P. Chemically Reacting Flow: Theory and Practice, John Wiley and Sons, New Jersey (2005) [31] KEE, R., RUPLEY, F., and MEEKS, E. Chemkin-III: a FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics. Sondia National Laboratories, Technical Report, Livermove SAND96-8216(1996) [32] WANG, Z. A., YU, B., and CHEN, H. Scaling vortex breakdown mechanism based on viscous effect in shock cylindrical bubble interaction. Physics of Fluids, 30(12), 126103(2018) [33] LI, Y. X., WANG, Z. A., and YU, B. Gaussian models for late-time evolution of two-dimensional shock-light cylindrical bubble interaction. Shock Waves, 30(5), 169-184(2020) [34] LIU, X. D., OSHER, S., and CHAN, T. Weighted essentially non-oscillatory schemes. Journal of Computational Physics, 115(1), 200-212(1994) [35] SPITERI, R. J. and RUUTH, S. J. Non-linear evolution using optimal fourth-order strong-stability-preserving Runge-Kutta methods. Mathematics and Computers in Simulation, 62(1), 125-135(2003) [36] VERWER, J. G., SOMMEIJER, B. P., and HUNDSDORFER, W. RKC time-stepping for advection-diffusion-reaction problems. Journal of Computational Physics, 20(1), 61-79(2004) [37] NYBELEN, L. and PAOLI, R. Direct and large-eddy simulations of merging in corotating vortex system. AIAA Journal, 47(1), 157-167(2009) [38] JACQUIN, L., FABRE, D., and GEFFROY, P. The properties of a transport aircraft wake in the extended near field: an experimental study. 39th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno (2001) [39] DAVIDE, V. and MADDALENA, L. A numerical method for the solution of supersonic streamwise vortex dynamics. Aerospace Science and Technology, 79, 310-317(2018) [40] MEUNIER, P. and LEWEKE, T. Three-dimensional instability during vortex merging. Physics of Fluids, 13(10), 2747-2750(2001) [41] MITCHELL, B. E., LELE, S. K., and MOIN, P. Direct computation of the sound from a compressible co-rotating vortex pair. Journal of Fluid Mechanics, 285, 181-202(1995) [42] ZHENG, Z., ZHOU, F., and WANG, Z. A numerical study on compressibility effect on the evolution of vortex interaction (in Chinese). Acta Aeronautica et Astronautica Sinica, 41, 123295(2020) [43] CHEN, A. L., JACOB, J. D., and SAVA, O. Dynamics of co-rotating vortex pairs in the wakes of flapped airfoils. Journal of Fluid Mechanics, 382, 155-193(1999) [44] MARLES, D. and GURSUL, I. Effect of an axial jet on vortex merging. Physics of Fluids, 20(4), 047101(2008) [45] SAFFMAN, P. G. Vortex Dynamics, Cambridge University Press, Cambridge (1995) [46] HALLER, G. Lagrangian coherent structures. Annual Review of Fluid Mechanics, 47, 137-162(2015) [47] SHADDEN, S. C., LEKIEN, F., and MARSDEN, J. E. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D: Nonlinear Phenomena, 212(3), 271-304(2005) [48] SHADDEN, S. C., DABIRI, J. O., and MARSDEN, J. E. Lagrangian analysis of fluid transport in empirical vortex ring flows. Physics of Fluids, 18(4), 047105(2006) [49] HAN, S., ZHANG, S., and ZHANG, H. A Lagrangian criterion of unsteady flow separation for two-dimensional periodic flows. Applied Mathematics and Mechanics (English Edition), 39(7), 1007-1018(2018) https://doi.org/10.1007/s10483-018-2350-8 [50] HANG, H., YU, B., and XIANG, Y. An objective-adaptive refinement criterion based on modified ridge extraction method for finite-time Lyapunov exponent (FTLE) calculation. Journal of Visualization, 23(1), 81-95(2020) [51] LIANG, G., YU, B., and ZHANG, B. Hidden flow structures in compressible mixing layer and a quantitative analysis of entrainment based on Lagrangian method. Journal of Hydrodynamics, 31(2), 256-265(2019) [52] QIN, S., LIU, H., and XIANG, Y. Lagrangian flow visualization of multiple co-axial co-rotating vortex rings. Journal of Visualization, 21(1), 63-71(2018) [53] XIANG, Y., LIN, H., and ZHANG, B. Quantitative analysis of vortex added-mass and impulse generation during vortex ring formation based on elliptic Lagrangian coherent structures. Experimental Thermal and Fluid Science, 94, 295-303(2018) |