[1] SUGIMOTO, A., OCHI, H., FUJIMURA, S., YOSHIDA, A., MIYADERA, T., and TSUCHIDA, M. Flexible OLED displays using plastic substrates. IEEE Journal of Selected Topics in Quantum Electronics, 10(1), 107-114(2004) [2] CRAWFORD, G. P. Flexible Flat Panel Display Technology, Wiley Online Library, New York (2005) [3] KIM, S., KWON, H. J., LEE, S., SHIM, H., CHUN, Y., CHOI, W., KWACK, J., HAN, D., SONG, M., and KIM, S. Low-power flexible organic light-emitting diode display device. Advanced Materials, 23(31), 3511-3516(2011) [4] DAGDEVIREN, C., YANG, B. D., SU, Y., TRAN, P. L., JOE, P., ANDERSON, E., XIA, J., DORAISWAMY, V., DEHDASHTI, B., and FENG, X. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proceedings of the National Academy of Sciences, 111(5), 1927-1932(2014) [5] HATTORI, Y., FALGOUT, L., LEE, W., JUNG, S. Y., POON, E., LEE, J. W., NA, I., GEISLER, A., SADHWANI, D., and ZHANG, Y. Multifunctional skin-like electronics for quantitative, clinical monitoring of cutaneous wound healing. Advanced Healthcare Materials, 3(10), 1597-1607(2014) [6] XU, S., ZHANG, Y., CHO, J., LEE, J., HUANG, X., JIA, L., FAN, J. A., SU, Y., SU, J., and ZHANG, H. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nature Communication, 4(1), 1-8(2013) [7] KO, H. C., STOYKOVICH, M. P., SONG, J. Z., MALYARCHUK, V., CHOI, W. M., YU, C. J., GEDDES, J. B., XIAO, J. L., WANG, S. D., HUANG, Y. G., and ROGERS, J. A. A hemispherical electronic eye camera based on compressible silicon optoelectronics. nature, 454(7205), 748-753(2008) [8] MENGÜÇ, Y., YANG, S. Y., KIM, S., ROGERS, J. A., and SITTI, M. Gecko-inspired controllable adhesive structures applied to micromanipulation. Advanced Functional Materials, 22(6), 1246-1254(2012) [9] KIM, D. H., LU, N., MA, R., KIM, Y. S., KIM, R. H., WANG, S., WU, J., WON, S. M., TAO, H., and ISLAM, A. Epidermal electronics. Science, 333(6044), 838-843(2011) [10] ZENG, W., SHU, L., LI, Q., CHEN, S., WANG, F., and TAO, X. M. Fiber-based wearable electronics:a review of materials, fabrication, devices, and applications. Advanced Materials, 26(31), 5310-5336(2014) [11] WON, S. M., SONG, E. M., REEDER, J. T., and ROGERS, J. A. Emerging modalities and implantable technologies for neuromodulation. Cell, 181(1), 115-135(2020) [12] KHANG, D. Y., JIANG, H. Q., HUANG, Y., and ROGERS, J. A. A stretchable form of singlecrystal silicon for high-performance electronics on rubber substrates. Science, 311(5758), 208-212(2006) [13] ZHANG, Y. and HUANG, Y. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. The 6th International Conference on Nanoscience and Technology, 347(6218), 154-159(2015) [14] SU, Y. W., LIU, Z. J., KIM, S., WU, J., HUANG, Y. G., and ROGERS, J. A. Mechanics of stretchable electronics with high fill factors. International Journal of Solids, 49(23-24), 3416-3421(2012) [15] ROGERS, J. A., SOMEYA, T., and HUANG, Y. G. Materials and mechanics for stretchable electronics. Science, 327(5973), 1603-1607(2010) [16] HWANG, S. W., TAO, H., KIM, D. H., CHENG, H. Y., SONG, J. K., RILL, E., BRENCKLE, M. A., PANILAITIS, B., WON, S. W., KIM, Y. S., SONG, Y. M., YU, K. J., AMEEN, A., LI, R., SU, Y. W., YANG, M. M., KAPLAN, D. L., ZAKIN, M. R., SLEPIAN, M. J., HUANG, Y. G., OMENTTO, F. G., and ROGERS, J. A. A physically transient form of silicon electronics. Science, 337(6102), 1640-1644(2012) [17] BOWDEN, N., BRITTAIN, S., EVANS, A. G., HUTCHINSON, J. W., and WHITESIDES, G. M. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. nature, 393(6681), 146-149(1998) [18] CHOI, W. M., SONG, J. Z., KHANG, D. Y., JIANG, H. Q., HUANG, Y. Y., and ROGERS, J. A. Biaxially stretchable "wavy" silicon nanomembranes. Nano Letters, 7(6), 1655-1663(2007) [19] LACOUR, S. P., JONES, J., WAGNER, S., LI, T., and SUO, Z. G. Stretchable interconnects for elastic electronic surfaces. Proceedings of the IEEE, 93(8), 1459-1467(2005) [20] LEE, J., WU, J., SHI, M. X., YOON, J., PARK, S. I., LI, M., LIU, Z. G., HUANG, Y. G., and ROGERS, J. A. Stretchable solar cells:stretchable GaAs photovoltaics with designs that enable high areal coverage. Advanced Materials, 23, 986-991(2011) [21] KIM, D. H., SONG, J., CHOI, W. M., KIM, H. S., KIM, R. H., LIU, Z. J., HUANG, Y. G., HWANG, K. C., ZHANG, Y. W., and ROGERS, J. A. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proceedings of the National Academy of Sciences, 105(48), 18675-18680(2008) [22] SONG, J. Z., FENG, X., and HUANG, Y. G. Mechanics and thermal management of stretchable inorganic electronics. National Science Review, 3(1), 128-143(2016) [23] KIM, D. H., LU, N. S., HUANG, Y. G., and ROGERS, J. A. Materials for stretchable electronics in bioinspired and biointegrated devices. MRS Bulletin, 37(3), 226-235(2012) [24] XU, S., ZHANG, Y. H., JIA, L., MATHEWSON, K. E., JANG, K. I., KIM, J. H., FU, H. R., HUANG, X., CHAVA, P., WANG, R. H., BHOLE, S., WANG, L. Z., NA, Y. J., GUAN, Y., FLAVIN, M., HAN, Z. S., HUANG, Y. G., and ROGERS, J. A. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science, 344(6179), 70-74(2014) [25] WANG, A., AVILA, R., and MA, Y. J. Mechanics design for buckling of thin ribbons on an elastomeric substrate without material failure. Journal of Applied Mechanics, 84(9), 094501(2017) [26] FAN, J. A., YEO, W. H., SU, Y., HATTORI, Y., LEE, W., JUNG, S. Y., ZHANG, Y., LIU, Z., CHENG, H., and FALGOUT, L. Fractal design concepts for stretchable electronics. Nature Communication, 5(1), 1-8(2014) [27] SU, Y. W., WANG, S. D., HUANG, Y., LUAN, H. W., DONG, W. T., FAN, J. A., YANG, Q. L., ROGERS, J. A., and HUANG, Y. G. Elasticity of fractal inspired interconnects. Small, 11(3), 367-373(2015) [28] XU, S., YAN, Z., JANG, K. I., HUANG, W., FU, H., KIM, J., WEI, Z., FLAVIN, M., MCCRACKEN, J., and WANG, R. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science, 347(6218), 154-159(2015) [29] SU, Y., PING, X., YU, K. J., LEE, J. W., FAN, J. A., WANG, B., LI, M., LI, R., HARBURG, D. V., and HUANG, Y. In-plane deformation mechanics for highly stretchable electronics. Advanced Materials, 29(8), 1604989(2017) [30] LI, M., LI, X., CHE, L. X., LI, F. W., and KANG, Z. Non-uniform global-buckling and localfolding in thin film of stretchable electronics. International Journal of Mechanical Sciences, 175, 105537(2020) [31] ZHANG, Y. C., JIAO, Y., WU, J., MA, Y. J., and FENG, X. Configurations evolution of a buckled ribbon in response to out-of-plane loading. Extreme Mechanics Letters, 34, 100604(2020) [32] ZHANG, Y. H., WANG, S. D., LI, X. T., FAN, J. A., XU, S., SONG, Y. M., CHOI, K. J., YEO, W. H., LEE, W., and NAZAAR, S. N. Experimental and theoretical studies of serpentine microstructures bonded to prestrained elastomers for stretchable electronics. Advanced Functional Materials, 24(14), 2028-2037(2014) [33] LIU, H., XUE, R. Y., HU, J. Q., PING, X. C., WU, H. D., HUANG, M. Q., ZHANG, H., GUO, X., LI, R., CHEN, Y. L., and SU, Y. W. Systematic study on the mechanical and electric behaviors of the nonbuckling interconnect design of stretchable electronics. Science China Physics, Mechanics & Astronomy, 61(11), 114611(2018) [34] TIMOSHENKO, S. and GERE, J. M. Theory of Elastic Stability, McGraw Hill, New York (1961) |