[1] BELL, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 321(5895), 1457-1461(2008) [2] POUDEL, B., HAO, Q., MA, Y., LAN, Y., MINNICH, A., YU, B., YAN, X., WANG, D., MUTO, A., VASHAEE, D., CHEN, X., LIU, J., DRESSELHAUS, M. S., CHEN, G., and REN, Z. Highthermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 320(5876), 634-638(2008) [3] LEONOV, V., TORFS, T., FIORINI, P., and VAN HOOF, C. Thermoelectric converters of human warmth for self-powered wireless sensor nodes. IEEE Sensors Journal, 7(5), 650-656(2007) [4] LALONDE, A. D., PEI, Y., WANG, H., and SNYDER, J. Lead telluride alloy thermoelectrics. Materials Today, 14(11), 526-532(2011) [5] MEJRI, M., THIMONT, Y., MALARD, B., and ESTOURNÈS, C. Characterization of the thermo-mechanical properties of p-type (MnSi1.77) and n-type (Mg2Si0.6Sn0.4) thermoelectric materials. Scripta Materialia, 172, 28-32(2019) [6] IOFFE, A. F. Byulleten' Izobretenii (Invention Review), USSR 126158, USSR (1960) [7] KOIZUMI, M. FGM activities in Japan. Composites Part B:Engineering, 28, 1-4(1997) [8] KUZNETSOV, V. L., KUZNETSOVA, L. A., KALIAZIN, A. E., and ROWE, D. M. High performance functionally graded and segmented Bi2Te3-based materials for thermoelectric power generation. Journal of Materials Science, 37(14), 2893-2897(2002) [9] MAHAN, G. D. Inhomogeneous thermoelectrics. Journal of Applied Physics, 70(8), 4551-4554(1991) [10] MÜLLER, E., DRAŠAR, Č., SCHILZ, J., and KAYSSER, W. A. Functionally graded materials for sensor and energy applications. Materials Science and Engineering:A, 362, 17-39(2003) [11] DASHEVSKY, Z., SHUSTERMAN, S., DARIEL, M. P., and DRABKIN, I. Thermoelectric efficiency in graded indium-doped PbTe crystals. Journal of Applied Physics, 92(3), 1425-1430(2002) [12] ANATYCHUK, L. I., VIKHOR, L. N., STRUTYNSKA, L. T., and TERMENA, I. S. Segmented generator modules using Bi2Te3-based materials. Journal of Electronic Materials, 40(5), 957-961(2011) [13] JU, C., DUI, G., UHL, C. G., CHU, L., WANG, X., and LIU, Y. Performance analysis of a functionally graded thermoelectric element with temperature-dependent material properties. Journal of Electronic Materials, 48(9), 5542-5554(2019) [14] HE, R., SCHIERNING, G., and NIELSCH, K. Thermoelectric devices:a review of devices, architectures, and contact optimization. Advanced Materials Technologies, 3(4), 1700256(2018) [15] HATZIKRANIOTIS, E., ZORBAS, K. T., SAMARAS, I., KYRATSI, T., and PARASKEVOPOULOS, K. M. Efficiency study of a commercial thermoelectric power generator (TEG) under thermal cycling. Journal of Electronic Materials, 39(9), 2112-2116(2010) [16] BARAKO, M. T., PARK, W., MARCONNET, A. M., ASHEGHI, M., and GOODSON, K. E. Thermal cycling, mechanical degradation, and the effective figure of merit of a thermoelectric module. Journal of Electronic Materials, 42(3), 372-381(2013) [17] HU, X. K., ZHANG, S. M., ZHAO, F., LIU, Y., and LIU, W. S. Thermoelectric device:contact interface and interface materials (in Chinese). Journal of Inorganic Materials, 34(3), 269-278(2019) [18] ZHANG, Q. H., BAI, S. Q., and CHEN, L. D. Technologies and applications of thermoelectric devices:current status, challenges and prospects (in Chinese). Journal of Inorganic Materials, 34(3), 279-293(2019) [19] SU, J., KE, L. L., and WANG, Y. S. Two-dimensional fretting contact analysis of piezoelectric materials. International Journal of Solids and Structures, 73-74, 41-54(2015) [20] SU, J., KE, L. L., and WANG, Y. S. Fretting contact of a functionally graded piezoelectric layered half-plane under a conducting punch. Smart Materials and Structures, 25(2), 25014(2016) [21] SU, J., KE, L. L., WANG, Y. S., and XIANG, Y. Axisymmetric torsional fretting contact between a spherical punch and an FGPM coating. Applied Mathematical Modelling, 52, 576-589(2017) [22] VOLKOV, S. S., VASILIEV, A. S., AIZIKOVICH, S. M., and MITRIN, B. I. Axisymmetric indentation of an electroelastic piezoelectric half-space with functionally graded piezoelectric coating by a circular punch. Acta Mechanica, 230(4), 1289-1302(2019) [23] VASILIEV, A. S. Penetration of a spherical conductive punch into a piezoelectric half-space with a functionally graded coating. International Journal of Engineering Science, 142, 230-241(2019) [24] ZHANG, X., LIU, J., SHEN, H., and WANG, Y. Elastic response of coating materials in thermoelasticity:indented by a hot punch. Journal of Thermal Stresses, 42(4), 475-489(2019) [25] LIU, J., KE, L. L., WANG, Y. S., YANG, J., and ALAM, F. Thermoelastic frictional contact of functionally graded materials with arbitrarily varying properties. International Journal of Mechanical Sciences, 63(1), 86-98(2012) [26] ZHOU, Y. T. and LEE, K. Y. Thermo-electro-mechanical contact behavior of a finite piezoelectric layer under a sliding punch with frictional heat generation. Journal of the Mechanics and Physics of Solids, 59(5), 1037-1061(2011) [27] ZHOU, Y. T., ZHANG, C., ZHONG, Z., and WANG, L. Transient thermo-electro-elastic contact analysis of a sliding punch acting on a functionally graded piezoelectric strip under non-Fourier heat conduction. European Journal of Mechanics A/Solids, 73, 90-100(2019) [28] ZHOU, Y. T., TIAN, X. J., and LI, F. J. On coupling contact analysis of thermoelectric materials. Applied Mathematical Modelling, 89, 1459-1474(2021) [29] TIAN, X. J., ZHOU, Y. T., GUAN, X. F., WANG, L. H., and DING, S. H. The frictional contact problem of a rigid punch sliding over thermoelectric materials. International Journal of Solids and Structures, 200-201(C), 145-157(2020) [30] ZHOU, Y. T. and LEE, K. Y. Thermal response of a partially insulated interface crack in a graded coating-substrate structure under thermo-mechanical disturbance:energy release and density. Theoretical and Applied Fracture Mechanics, 56(1), 22-33(2011) [31] ZHOU, Y. T. and LEE, K. Y. Thermo-electro-mechanical contact behavior of a finite piezoelectric layer under a sliding punch with frictional heat generation. Journal of the Mechanics and Physics of Solids, 59(5), 1037-1061(2011) [32] ZHOU, Y. T., LEE, K. Y., JANG, Y. H., and LI, J. The multiple fields created by two perfectlyconducting punches on piezoelectric/piezomagnetic materials with anisotropy. Journal of Applied Mathematics and Mechanics, 97(8), 946-960(2017) [33] WANG, B. L. and CUI, Y. J. Transient interlaminar thermal stress in multi-layered thermoelectric materials. Applied Thermal Engineering, 119, 207-214(2017) [34] GAO, J. L., DU, Q. G., ZHANG, X. D., and JIANG, X. Q. Thermal stress analysis and structure parameter selection for a Bi2Te3-based thermoelectric module. Journal of Electronic Materials, 40(5), 884-888(2011) |