[1] CANTOR, B., CHANG, I. T. H., KNIGHT, P., and VINCENT, A. J. B. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering:A, 375, 213-218(2004) [2] ZHANG, Y., ZUO, T. T., TANG, Z., GAO, M. C., DAHMEN, K. A., LIAW, P. K., and LU, Z. P. Microstructures and properties of high-entropy alloys. Progress in Materials Science, 61, 1-93(2014) [3] LI, Z., ZHAO, S., RITCHIE, R. O., and MEYERS, M. A. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Progress in Materials Science, 102, 296-345(2019) [4] NÖHRING, W. G. and CURTIN, W. A. Dislocation cross-slip in fcc solid solution alloys. Acta Materialia, 128, 135-148(2017) [5] WU, Z., GAO, Y. F., and BEI, H. Single crystal plastic behavior of a single-phase, face-center-cubic-structured, equiatomic FeNiCrCo alloy. Scripta Materialia, 109, 108-112(2015) [6] WU, B., XIE, Z., HUANG, J., LIN, J., YANG, Y., JIANG, L., HUANG, J., YE, G., ZHAO, C., and YANG, S. Microstructures and thermodynamic properties of high-entropy alloys CoCrCuFeNi. Intermetallics, 93, 40-46(2018) [7] ZHANG, H., HE, Y. Z., PAN, Y., and GUO, S. Thermally stable laser cladded CoCrCuFeNi high-entropy alloy coating with low stacking fault energy. Journal of Alloys and Compounds, 600, 210-214(2014) [8] CAI, Y., CHEN, Y., LUO, Z., GAO, F., and LI, L. Manufacturing of FeCoCrNiCux medium-entropy alloy coating using laser cladding technology. Materials & Design, 133, 91-108(2017) [9] HUANG, Y. S., CHEN, L., LUI, H. W., CAI, M. H., and YEH, J. W. Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy. Materials Science and Engineering:A, 457(1-2), 77-83(2007) [10] LUAN, B. and ROBBINS, M. O. The breakdown of continuum models for mechanical contacts. nature, 435(7044), 929-932(2005) [11] LI, L., CHEN, H., FANG, Q., LI, J., LIU, F., LIU, Y., and LIAW, P. K. Effects of temperature and strain rate on plastic deformation mechanisms of nanocrystalline high-entropy alloys. Intermetallics, 120, 106741(2020) [12] HUANG, C., PENG, X., FU, T., CHEN, X., XIANG, H., LI, Q., and HU, N. Molecular dynamics simulation of BCC Ta with coherent twin boundaries under nanoindentation. Materials Science and Engineering:A, 700, 609-616(2017) [13] HUA, D., YE, W., JIA, Q., ZHOU, Q., XIA, Q., SHI, J., DENG, Y. and WANG, H. Molecular dynamics simulation of nanoindentation on amorphous/amorphous nanolaminates. Applied Surface Science, 511, 145545(2020) [14] ZHU, P. Z. and FANG, F. Z. Molecular dynamics simulations of nanoindentation of monocrystalline germanium. Applied Physics A, 108(2), 415-421(2012) [15] DAW, M. S., FOILES, S. M., and BASKES, M. I. The embedded-atom method:a review of theory and applications. Materials Science Reports, 9(7-8), 251-310(1993) [16] WANG, S. Y., WANG, S. L., YANG, Y. R., WANG, X. D., and LEE, D. J. High-temperature reactive wetting systems:role of lattice constant. Chemical Engineering Science, 209, 115206(2019) [17] AN, Z., JIA, H., WU, Y., RACK, P. D., PATCHEN, A. D., LIU, Y., REN, Y., LI, N., and LIAW, P. K. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition. Materials Research Letters, 3(4), 203-209(2015) [18] QIU, C., ZHU, P., FANG, F., YUAN, D., and SHEN, X. Study of nanoindentation behavior of amorphous alloy using molecular dynamics. Applied Surface Science, 305, 101-110(2014) [19] FANG, Q., YI, M., LI, J., LIU, B., and HUANG, Z. Deformation behaviors of Cu29Zr32Ti15Al5Ni19 high entropy bulk metallic glass during nanoindentation. Applied Surface Science, 443, 122-130(2018) [20] STUKOWSKI, A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18(1), 015012(2009) [21] OLIVER, W. C. and PHARR, G. M. Measurement of hardness and elastic modulus by instrumented indentation:advances in understanding and refinements to methodology. Journal of Materials Research, 19(1), 3-20(2004) [22] FAN, X., RUI, Z., CAO, H., FU, R., FENG, R., and YAN, C. Nanoindentation of γ-TiAl with different crystal surfaces by molecular dynamics simulations. Materials, 12(5), 770(2019) [23] CHENG, S. and ROBBINS, M. O. Defining contact at the atomic scale. Tribology Letters, 39(3), 329-348(2010) [24] CHENG, J. B., LIANG, X. B., WANG, Z. H., and XU, B. S. Formation and mechanical properties of CoNiCuFeCr high-entropy alloys coatings prepared by plasma transferred arc cladding process. Plasma Chemistry and Plasma Processing, 33(5), 979-992(2013) [25] DENG, X., KOOPMAN, M., CHAWLA, N., and CHAWLA, K. K. Young's modulus of (Cu, Ag)-Sn intermetallics measured by nanoindentation. Materials Science and Engineering:A, 364(1-2), 240-243(2004) [26] DEDONCKER, R., DHEMIA, P., RADNÓCZI, G., TÉTARD, F., BELLIARD, L., ABADIAS, G., MARTIN, N., and DEPLA, D. Reactive sputter deposition of CoCrCuFeNi in nitrogen/argon mixtures. Journal of Alloys and Compounds, 769, 881-888(2018) [27] HUANG, Z., GU, L. Y., and WEERTMAN, J. R. Temperature dependence of hardness of nanocrystalleve copper in low-temperature range. Scripta Materialia, 37(7), 1071-1075(1997) [28] GRAÇA, S., COLAÇO, R., and VILAR, R. Indentation size effect in nickel and cobalt laser clad coatings. Surface and Coatings Technology, 202(3), 538-548(2007) [29] FANG, T. H., WENG, C. I., and CHANG, J. G. Molecular dynamics analysis of temperature effects on nanoindentation measurement. Materials Science and Engineering:A, 357(1-2), 7-12(2003) [30] WANG, Z., LI, J., FANG, Q., LIU, B., and ZHANG, L. Investigation into nanoscratching mechanical response of AlCrCuFeNi high-entropy alloys using atomic simulations. Applied Surface Science, 416, 470-481(2017) [31] JOSEPH, J. Study of direct laser fabricated high entropy alloys, Ph. D. dissertation, Deakin University (2016) [32] REMINGTON, T. P., RUESTES, C. J., BRINGA, E. M., REMINGTON, B. A., LU, C. H., KAD, B., and MEYERS, M. A. Plastic deformation in nanoindentation of tantalum:a new mechanism for prismatic loop formation. Acta Materialia, 78, 378-393(2014) [33] LIU, Q., DENG, L., and WANG, X. Interactions between prismatic dislocation loop and coherent twin boundary under nanoindentation investigated by molecular dynamics. Materials Science and Engineering:A, 676, 182-190(2016) [34] THOMPSON, N. Dislocation nodes in face-centred cubic lattices. Proceedings of the Physical Society Section B, 66(6), 481-492(1953) [35] LI, J., CHEN, H., FANG, Q., JIANG, C., LIU, Y., and LIAW, P. K. Unraveling the dislocation-precipitate interactions in high-entropy alloys. International Journal of Plasticity, 133, 102819(2020) [36] BEGAU, C., HUA, J., and HARTMAIER, A. A novel approach to study dislocation density tensors and lattice rotation patterns in atomistic simulations. Journal of the Mechanics and Physics of Solids, 60(4), 711-722(2012) [37] CAPOLUNGO, L., CHERKAOUI, M., and QU, J. On the elastic-viscoplastic behavior of nanocrystalline materials. International Journal of Plasticity, 23(4), 561-591(2007) [38] LI, J., WENG, G. J., CHEN, S., and WU, X. On strain hardening mechanism in gradient nanostructures. International Journal of Plasticity, 88, 89-107(2017) [39] LI, J., LU, W., CHEN, S., and LIU, C. Revealing extra strengthening and strain hardening in heterogeneous two-phase nanostructures. International Journal of Plasticity, 126, 102626(2020) [40] DENTON, A. R. and ASHCROFT, N. W. Vegard's law. Physical Review A, 43(6), 3161-3164(1991) [41] TODA-CARABALLO, I. and RIVERA-DÍAZ-DEL-CASTILLO, P. E. Modelling solid solution hardening in high entropy alloys. Acta Materialia, 85, 14-23(2015) [42] GANJI, R. S., KARTHIK, P. S., RAO, K. B. S., and RAJULAPATI, K. V. Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by microand nanoindentation methods. Acta Materialia, 125, 58-68(2017) [43] OKAMOTO, N. L., FUJIMOTO, S., KAMBARA, Y., KAWAMURA, M., CHEN, Z. M., MATSUNOSHITA, H., TANAKA, K., INUI, H., and GEORGE, E. P. Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy. Scientific Reports, 6(1), 1-10(2016) [44] XIA, Y. Z., BEI, H., GAO, Y. F., CATOOR, D., and GEORGE, E. P. Synthesis, characterization, and nanoindentation response of single crystal Fe-Cr-Ni alloys with FCC and BCC structures. Materials Science and Engineering:A, 611, 177-187(2014) |